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Today

• Dictionaries

– Hashing
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Hash Tables: Review

• Aim for constant-time (i.e., O(1)) find, insert, and delete

– “On average” under some reasonable assumptions

• A hash table is an array of some fixed size

– But growable as we’ll see
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Hashing Choices

1. Choose a Hash function

2. Choose TableSize

3. Choose a Collision Resolution Strategy from these:

– Separate Chaining

– Open Addressing

• Linear Probing

• Quadratic Probing

• Double Hashing

• Other issues to consider:

– Deletion?

– What to do when the hash table gets “too full”?
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Open Addressing: Linear Probing

• Why not use up the empty space in the table?

• Store directly in the array cell (no linked list)

• How to deal with collisions?

• If h(key) is already full, 

– try (h(key) + 1) % TableSize.  If full,

– try (h(key) + 2) % TableSize.  If full,

– try (h(key) + 3) % TableSize.  If full…

• Example: insert 38, 19, 8, 109, 10
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Open Addressing: Linear Probing
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• Another simple idea: If h(key) is already full, 

– try (h(key) + 1) % TableSize.  If full,

– try (h(key) + 2) % TableSize.  If full,

– try (h(key) + 3) % TableSize.  If full…

• Example: insert 38, 19, 8, 109, 10



Open Addressing: Linear Probing
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• Another simple idea: If h(key) is already full, 

– try (h(key) + 1) % TableSize.  If full,

– try (h(key) + 2) % TableSize.  If full,

– try (h(key) + 3) % TableSize.  If full…

• Example: insert 38, 19, 8, 109, 10



Open Addressing: Linear Probing
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0 8
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• Another simple idea: If h(key) is already full, 

– try (h(key) + 1) % TableSize.  If full,

– try (h(key) + 2) % TableSize.  If full,

– try (h(key) + 3) % TableSize.  If full…

• Example: insert 38, 19, 8, 109, 10



Open Addressing: Linear Probing
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0 8

1 109

2 10
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8 38

9 19

• Another simple idea: If h(key) is already full, 

– try (h(key) + 1) % TableSize.  If full,

– try (h(key) + 2) % TableSize.  If full,

– try (h(key) + 3) % TableSize.  If full…

• Example: insert 38, 19, 8, 109, 10



Open addressing
Linear probing is one example of open addressing

In general, open addressing means resolving collisions by trying a 

sequence of other positions in the table.

Trying the next spot is called probing

– We just did linear probing:

• ith probe: (h(key) + i) % TableSize

– In general have some probe function f and : 

• ith probe: (h(key) + f(i)) % TableSize

Open addressing does poorly with high load factor 

– So want larger tables

– Too many probes means no more O(1)
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Terminology

We and the book use the terms

– “chaining” or “separate chaining”

– “open addressing”

Very confusingly,

– “open hashing” is a synonym for “chaining”

– “closed hashing” is a synonym for “open addressing”
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Open Addressing: Linear Probing

What about find? If value is in table?  If not there? Worst case?

What about delete?

How does open addressing with linear probing compare to separate 

chaining?
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Open Addressing: Other Operations

insert finds an open table position using a probe function

What about find?

– Must use same probe function to “retrace the trail” for the data

– Unsuccessful search when reach empty position

What about delete?

– Must use “lazy” deletion.  Why?

• Marker indicates “no data here, but don’t stop probing”

– Note: delete with chaining is plain-old list-remove
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Primary Clustering

It turns out linear probing is a bad idea, even though the probe 

function is quick to compute (a good thing)
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[R. Sedgewick]

• Tends to produce 

clusters, which lead 

to long probe 

sequences

• Called primary 

clustering

• Saw the start of a 

cluster in our linear 

probing example



Analysis of Linear Probing

• Trivial fact: For any  < 1, linear probing will find an empty slot

– It is “safe” in this sense: no infinite loop unless table is full

• Non-trivial facts we won’t prove:

Average # of probes given  (in the limit as TableSize→ )

– Unsuccessful search:

– Successful search:  

• This is pretty bad: need to leave sufficient empty space in the 

table to get decent performance (see chart)
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Analysis in chart form

• Linear-probing performance degrades rapidly as table gets full

– (Formula assumes “large table” but point remains)

• By comparison, separate chaining performance is linear in  and 

has no trouble with >1
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Open Addressing: Linear probing

(h(key) + f(i)) % TableSize

– For linear probing: 

f(i) = i

– So probe sequence is:

• 0th probe:  h(key) % TableSize

• 1st probe: (h(key) + 1) % TableSize

• 2nd probe: (h(key) + 2) % TableSize

• 3rd probe: (h(key) + 3) % TableSize

• …

• ith probe: (h(key) + i) % TableSize
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Open Addressing: Quadratic probing

• We can avoid primary clustering by changing the probe function…

(h(key) + f(i)) % TableSize

– For quadratic probing: 

f(i) = i2

– So probe sequence is:

• 0th probe:  h(key) % TableSize

• 1st probe: (h(key) + 1) % TableSize

• 2nd probe: (h(key) + 4) % TableSize

• 3rd probe: (h(key) + 9) % TableSize

• …

• ith probe: (h(key) + i2) % TableSize

• Intuition: Probes quickly “leave the neighborhood”
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Quadratic Probing Example
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ith probe: (h(key) + i2) % TableSize



Quadratic Probing Example
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TableSize = 10

insert(89)
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Quadratic Probing Example
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TableSize = 10

insert(89)

insert(18)
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Quadratic Probing Example
TableSize = 10

insert(89)

insert(18)

insert(49)

0
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7

8 18

9 89
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Quadratic Probing Example
TableSize = 10

insert(89)

insert(18)

insert(49)

49 % 10 = 9 collision!

(49 + 1) % 10 = 0

insert(58)

0 49

1

2

3

4

5

6

7

8 18

9 89
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Quadratic Probing Example
TableSize = 10

insert(89)

insert(18)

insert(49)

insert(58)

58 % 10 = 8 collision!

(58 + 1) % 10 = 9 collision!

(58 + 4) % 10 = 2

insert(79)

0 49

1

2 58

3

4

5

6

7

8 18

9 89
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Quadratic Probing Example
TableSize = 10

insert(89)

insert(18)

insert(49)

insert(58)

insert(79)

79 % 10 = 9 collision!

(79 + 1) % 10 = 0 collision!

(79 + 4) % 10 = 3

0 49

1

2 58

3 79

4

5

6

7

8 18

9 89
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Another Quadratic Probing Example
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TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48                   (48 % 7 = 6)

5                     (  5 % 7 = 5)

55                   (55 % 7 = 6)

47                   (47 % 7 = 5)

0

1

2

3

4

5

6

ith probe: (h(key) + i2) % TableSize



Another Quadratic Probing Example

0

1

2

3

4

5

6 76

TableSize = 7

Insert:

76               (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

ith probe: (h(key) + i2) % TableSize
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Another Quadratic Probing Example

0

1

2

3

4

5 40

6 76

TableSize = 7

Insert:

76               (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

ith probe: (h(key) + i2) % TableSize
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Another Quadratic Probing Example

0 48

1

2

3

4

5 40

6 76

TableSize = 7

Insert:

76               (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

ith probe: (h(key) + i2) % TableSize
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Another Quadratic Probing Example

0 48

1

2 5

3

4

5 40

6 76

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

ith probe: (h(key) + i2) % TableSize
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Another Quadratic Probing Example

0 48

1

2 5

3 55

4

5 40

6 76

TableSize = 7

Insert:

76               (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

ith probe: (h(key) + i2) % TableSize
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Another Quadratic Probing Example

0 48

1

2 5

3 55

4

5 40

6 76

TableSize = 7

Insert:

76               (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

(47 + 1) % 7 = 6 collision!

(47 + 4) % 7 = 2 collision! 

(47 + 9) % 7 = 0 collision!

(47 + 16) % 7 = 0 collision!

(47 + 25) % 7 = 2 collision!

Will we ever get a 1 or 

4?!?

ith probe: (h(key) + i2) % TableSize
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Another Quadratic Probing Example

0 48

1

2 5

3 55

4

5 40

6 76

insert(47) will always fail here. Why?

For all i, (5 + i2) % 7 is 0, 2, 5, or 6

Proof uses induction and 

(5 + i2) % 7 = (5 + (i - 7)2) % 7

In fact, for all c and k, 

(c + i2) % k = (c + (i - k)2) % k
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From bad news to good news

Bad News:

• After TableSize quadratic probes, we cycle through the same 

indices

Good News: 

• If TableSize is prime and  < ½, then quadratic probing will find an 

empty slot in at most TableSize/2 probes

• So: If you keep  < ½ and TableSize is prime, no need to detect 

cycles

• Proof posted in lecture11.txt (slightly less detailed proof in textbook)

– For prime T and 0  i,j  T/2 where i  j,

(h(key) + i2) % T  (h(key) + j2) % T

That is, if T is prime, the first T/2 quadratic probes map 
to different locations
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Quadratic Probing:

Success guarantee for  < ½

• If size is prime and  < ½, then quadratic probing will find 
an empty slot in size/2 probes or fewer.
– show for all 0  i,j  size/2 and i  j

(h(x) + i2) mod size  (h(x) + j2) mod size

– by contradiction: suppose that for some i  j:
(h(x) + i2) mod size = (h(x) + j2) mod size

 i2 mod size = j2 mod size

 (i2 - j2) mod size = 0

 [(i + j)(i - j)] mod size = 0

BUT size does not divide (i-j) or (i+j)

How can i+j = 0 or i+j = size when:

i  j and 0  i,j  size/2?

Similarly how can i-j = 0 or i-j = size ?

First size/2 probes

distinct. If < half full,

one is empty.

First size/2 

probes will 

be distinct, 

and if less 

than half of 

table is full 

then after 

size/2 probes 

you will find 

one of those 

empty spots

ith probe and 

jth probe

One of 

these 

must 

be = 0 

when 

mod 

size

Size would 

need to divide 

one of these



Clustering reconsidered

• Quadratic probing does not suffer from primary clustering: 

As we resolve collisions we are not merely growing “big blobs” by 

adding one more item to the end of a cluster, we are looking i2 

locations away, for the next possible spot.

• But quadratic probing does not help resolve collisions between 

keys that initially hash to the same index

– Any 2 keys that initially hash to the same index will have the 

same series of moves after that looking for any empty spot

– Called secondary clustering

• Can avoid secondary clustering with a probe function that 

depends on the key: double hashing…
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Open Addressing: Double hashing

Idea: Given two good hash functions h and g, it is very unlikely that for 
some key,  h(key) == g(key)

(h(key) + f(i)) % TableSize

– For double hashing: 

f(i) = i*g(key)

– So probe sequence is:

• 0th probe:  h(key) % TableSize

• 1st probe: (h(key) + g(key)) % TableSize

• 2nd probe: (h(key) + 2*g(key)) % TableSize

• 3rd probe: (h(key) + 3*g(key)) % TableSize

• …

• ith probe: (h(key) + i*g(key)) % TableSize

• Detail: Make sure g(key) can’t be 0
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Open Addressing: Double Hashing

0

1

2

3

4

5

6

7

8

9

Insert these values into the hash table 

in this order.  Resolve any collisions 

with double hashing:

13

28

33

147

43

T = 10 (TableSize)

Hash Functions:

h(key) = key mod T

g(key) = 1 + ((key/T) mod (T-1))

ith probe:(h(key) + i*g(key)) % TableSize



Double Hashing

Insert these values into the hash table in this order.  Resolve 

any collisions with double hashing:

13

28

33

147

43

T = 10 (TableSize)

Hash Functions:

h(key) = key mod T

g(key) = 1 + ((key/T) mod (T-1))   

0

1

2

3 13

4

5

6

7

8

9
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ith probe:(h(key) + i*g(key)) % TableSize



Double Hashing

Insert these values into the hash table in this order.  Resolve 

any collisions with double hashing:

13

28

33

147

43

T = 10 (TableSize)

Hash Functions:

h(key) = key mod T

g(key) = 1 + ((key/T) mod (T-1)) 

0

1

2

3 13

4

5

6

7

8 28

9
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ith probe:(h(key) + i*g(key)) % TableSize



Double Hashing

Insert these values into the hash table in this order.  Resolve 

any collisions with double hashing:

13

28

33  g(33) = 1 + 3 mod 9 = 4

147

43

T = 10 (TableSize)

Hash Functions:

h(key) = key mod T

g(key) = 1 + ((key/T) mod (T-1)) 

0

1

2

3 13

4

5

6

7 33

8 28

9
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ith probe:(h(key) + i*g(key)) % TableSize



Double Hashing

Insert these values into the hash table in this order.  Resolve 

any collisions with double hashing:

13

28

33 

147  g(147) = 1 + 14 mod 9 = 6

43

T = 10 (TableSize)

Hash Functions:

h(key) = key mod T

g(key) = 1 + ((key/T) mod (T-1))   

0

1

2

3 13

4

5

6

7 33

8 28

9 147
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ith probe:(h(key) + i*g(key)) % TableSize



Double Hashing

Insert these values into the hash table in this order.  Resolve 

any collisions with double hashing:

13

28

33 

147  g(147) = 1 + 14 mod 9 = 6

43  g(43) = 1 + 4 mod 9 = 5

T = 10 (TableSize)

Hash Functions:

h(key) = key mod T

g(key) = 1 + ((key/T) mod (T-1))   

0

1

2

3 13

4

5

6

7 33

8 28

9 147

We have a problem:

3 + 0 = 3 3 + 5 = 8 3 + 10 = 13

3 + 15 = 18 3 + 20 = 23
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ith probe:(h(key) + i*g(key)) % TableSize



Double-hashing analysis

• Intuition: Since each probe is “jumping” by g(key) each time, 

we “leave the neighborhood” and “go different places from other 

initial collisions”

But, as in quadratic probing, we could still have a problem where 

we are not "safe" due to an infinite loop despite room in table

– It is known that this cannot happen in at least one case:

For primes p and q such that 2 < q < p

h(key) = key % p

g(key) = q – (key % q)
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Yet another reason to use a prime 

TableSize

45

• So, for double hashing

ith probe:  (h(key) + i*g(key))% TableSize

• Say g(key) divides Tablesize

– That is, there is some integer x such that x*g(key)=Tablesize

– After x probes, we’ll be back to trying the same indices as 
before

• Ex:

– Tablesize=50

– g(key)=25

– Probing sequence:

• h(key)

• h(key)+25

• h(key)+50=h(key)

• h(key)+75=h(key)+25

• Only 1 & itself divide a prime
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More double-hashing facts

• Assume “uniform hashing”

– Means probability of g(key1) % p == g(key2) % p is

1/p

• Non-trivial facts we won’t prove:

Average # of probes given  (in the limit as TableSize→ )

– Unsuccessful search (intuitive):

– Successful search (less intuitive):

• Bottom line: unsuccessful bad (but not as bad as linear probing),

but successful is not nearly as bad
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Charts
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Where are we?

• Separate Chaining is easy

– find, delete proportional to load factor on average

– insert can be constant if just push on front of list

• Open addressing uses probing, has clustering issues as table fills

Why use it:

– Less memory allocation?

• Some run-time overhead for allocating linked list (or

whatever) nodes; open addressing could be faster

– Easier data representation?

• Now:

– Growing the table when it gets too full (aka “rehashing”)

– Relation between hashing/comparing and connection to Java
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Rehashing

• As with array-based stacks/queues/lists, if table gets too full,

create a bigger table and copy everything over

• With separate chaining, we get to decide what “too full” means

– Keep load factor reasonable (e.g., < 1)?

– Consider average or max size of non-empty chains?

• For open addressing, half-full is a good rule of thumb

• New table size

– Twice-as-big is a good idea, except, uhm, that won’t be prime!

– So go about twice-as-big

– Can have a list of prime numbers in your code since you

probably won’t grow more than 20-30 times, and then

calculate after that
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More on rehashing

• What if we copy all data to the same indices in the new table?

– Will not work; we calculated the index based on TableSize

• Go through table, do standard insert for each into new table

– Iterate over old table: O(n)

– n inserts / calls to the hash function: n ⋅ O(1) = O(n)

• Is there some way to avoid all those hash function calls?

– Space/time tradeoff: Could store h(key) with each data item

– Growing the table is still O(n); saving h(key) only helps by a

constant factor
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Hashing and comparing

• Our use of int key can lead to us overlooking a critical detail:

– We initially hash E to get a table index

– While chaining or probing we need to determine if this is the E

that I am looking for. Just need equality testing.

• So a hash table needs a hash function and a equality testing

– In the Java library each object has an equals method and a

hashCode method

class Object { 

boolean equals(Object o) {…}

int hashCode() {…}

…

}
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Equal objects must hash the same

• The Java library (and your project hash table) make a very

important assumption that clients must satisfy…

• Object-oriented way of saying it:

If a.equals(b), then we must require 

a.hashCode()==b.hashCode()

• Function object way of saying it:

If c.compare(a,b) == 0, then we must require

h.hash(a) == h.hash(b)

• If you ever override equals

– You need to override hashCode also in a consistent way

– See CoreJava book, Chapter 5 for other "gotchas" with equals
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By the way: comparison has rules too

We have not emphasized important “rules” about comparison for:

– All our dictionaries

– Sorting (next major topic)

Comparison must impose a consistent, total ordering:

For all a, b, and c,

– If compare(a,b) < 0, then compare(b,a) > 0

– If compare(a,b) == 0, then compare(b,a) == 0

– If compare(a,b) < 0 and compare(b,c) < 0,                        

then compare(a,c) < 0
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A Generally Good hashCode()

int result = 17; // start at a prime

foreach field f

int fieldHashcode =

boolean: (f ? 1: 0)

byte, char, short, int: (int) f

long: (int) (f ^ (f >>> 32))

float: Float.floatToIntBits(f)

double: Double.doubleToLongBits(f), then above

Object: object.hashCode( )

result = 31 * result + fieldHashcode; 

return result;
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Final word on hashing

• The hash table is one of the most important data structures

– Efficient find, insert, and delete

– Operations based on sorted order are not so efficient

– Useful in many, many real-world applications

– Popular topic for job interview questions

• Important to use a good hash function

– Good distribution, Uses enough of key’s values

– Not overly expensive to calculate (bit shifts good!)

• Important to keep hash table at a good size

– Prime #

– Preferable  depends on type of table

• What we skipped: Perfect hashing, universal hash functions, 

hopscotch hashing, cuckoo hashing

• Side-comment: hash functions have uses beyond hash tables

– Examples: Cryptography, check-sums
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