
CSE 332: Data Structures & Parallelism

Lecture 11:More Hashing

Ruth Anderson

Winter 2018

Today

• Dictionaries

– Hashing

1/31/2018 2

Hash Tables: Review

• Aim for constant-time (i.e., O(1)) find, insert, and delete

– “On average” under some reasonable assumptions

• A hash table is an array of some fixed size

– But growable as we’ll see

1/31/2018 3

E int table-index
collision? collision

resolution

client hash table library

0

…

TableSize –1

hash table

Hashing Choices

1. Choose a Hash function

2. Choose TableSize

3. Choose a Collision Resolution Strategy from these:

– Separate Chaining

– Open Addressing

• Linear Probing

• Quadratic Probing

• Double Hashing

• Other issues to consider:

– Deletion?

– What to do when the hash table gets “too full”?

1/31/2018 4

Open Addressing: Linear Probing

• Why not use up the empty space in the table?

• Store directly in the array cell (no linked list)

• How to deal with collisions?

• If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

1/31/2018 5

0

1

2

3

4

5

6

7

8 38

9

Open Addressing: Linear Probing

1/31/2018 6

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Open Addressing: Linear Probing

1/31/2018 7

0 8

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Open Addressing: Linear Probing

1/31/2018 8

0 8

1 109

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Open Addressing: Linear Probing

1/31/2018 9

0 8

1 109

2 10

3 /

4 /

5 /

6 /

7 /

8 38

9 19

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Open addressing
Linear probing is one example of open addressing

In general, open addressing means resolving collisions by trying a

sequence of other positions in the table.

Trying the next spot is called probing

– We just did linear probing:

• ith probe: (h(key) + i) % TableSize

– In general have some probe function f and :

• ith probe: (h(key) + f(i)) % TableSize

Open addressing does poorly with high load factor 

– So want larger tables

– Too many probes means no more O(1)

1/31/2018 10

Terminology

We and the book use the terms

– “chaining” or “separate chaining”

– “open addressing”

Very confusingly,

– “open hashing” is a synonym for “chaining”

– “closed hashing” is a synonym for “open addressing”

1/31/2018 11

Open Addressing: Linear Probing

What about find? If value is in table? If not there? Worst case?

What about delete?

How does open addressing with linear probing compare to separate

chaining?

1/31/2018 12

Open Addressing: Other Operations

insert finds an open table position using a probe function

What about find?

– Must use same probe function to “retrace the trail” for the data

– Unsuccessful search when reach empty position

What about delete?

– Must use “lazy” deletion. Why?

• Marker indicates “no data here, but don’t stop probing”

– Note: delete with chaining is plain-old list-remove

1/31/2018 13

Primary Clustering

It turns out linear probing is a bad idea, even though the probe

function is quick to compute (a good thing)

1/31/2018 14

[R. Sedgewick]

• Tends to produce

clusters, which lead

to long probe

sequences

• Called primary

clustering

• Saw the start of a

cluster in our linear

probing example

Analysis of Linear Probing

• Trivial fact: For any  < 1, linear probing will find an empty slot

– It is “safe” in this sense: no infinite loop unless table is full

• Non-trivial facts we won’t prove:

Average # of probes given  (in the limit as TableSize→)

– Unsuccessful search:

– Successful search:

• This is pretty bad: need to leave sufficient empty space in the

table to get decent performance (see chart)

1/31/2018 15

  











2
1

1
1

2

1



 












1

1
1

2

1

Analysis in chart form

• Linear-probing performance degrades rapidly as table gets full

– (Formula assumes “large table” but point remains)

• By comparison, separate chaining performance is linear in  and

has no trouble with >1

1/31/2018 16

Open Addressing: Linear probing

(h(key) + f(i)) % TableSize

– For linear probing:

f(i) = i

– So probe sequence is:

• 0th probe: h(key) % TableSize

• 1st probe: (h(key) + 1) % TableSize

• 2nd probe: (h(key) + 2) % TableSize

• 3rd probe: (h(key) + 3) % TableSize

• …

• ith probe: (h(key) + i) % TableSize

1/31/2018 17

Open Addressing: Quadratic probing

• We can avoid primary clustering by changing the probe function…

(h(key) + f(i)) % TableSize

– For quadratic probing:

f(i) = i2

– So probe sequence is:

• 0th probe: h(key) % TableSize

• 1st probe: (h(key) + 1) % TableSize

• 2nd probe: (h(key) + 4) % TableSize

• 3rd probe: (h(key) + 9) % TableSize

• …

• ith probe: (h(key) + i2) % TableSize

• Intuition: Probes quickly “leave the neighborhood”

1/31/2018 18

Quadratic Probing Example

1/31/2018 19

0

1

2

3

4

5

6

7

8

9

TableSize=10

Insert:

89

18

49

58

79

ith probe: (h(key) + i2) % TableSize

Quadratic Probing Example

0

1

2

3

4

5

6

7

8

9

TableSize = 10

insert(89)

1/31/2018 20

Quadratic Probing Example

0

1

2

3

4

5

6

7

8

9 89

TableSize = 10

insert(89)

insert(18)

1/31/2018 21

Quadratic Probing Example
TableSize = 10

insert(89)

insert(18)

insert(49)

0

1

2

3

4

5

6

7

8 18

9 89

1/31/2018 22

Quadratic Probing Example
TableSize = 10

insert(89)

insert(18)

insert(49)

49 % 10 = 9 collision!

(49 + 1) % 10 = 0

insert(58)

0 49

1

2

3

4

5

6

7

8 18

9 89

1/31/2018 23

Quadratic Probing Example
TableSize = 10

insert(89)

insert(18)

insert(49)

insert(58)

58 % 10 = 8 collision!

(58 + 1) % 10 = 9 collision!

(58 + 4) % 10 = 2

insert(79)

0 49

1

2 58

3

4

5

6

7

8 18

9 89

1/31/2018 24

Quadratic Probing Example
TableSize = 10

insert(89)

insert(18)

insert(49)

insert(58)

insert(79)

79 % 10 = 9 collision!

(79 + 1) % 10 = 0 collision!

(79 + 4) % 10 = 3

0 49

1

2 58

3 79

4

5

6

7

8 18

9 89

1/31/2018 25

Another Quadratic Probing Example

1/31/2018 26

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0

1

2

3

4

5

6

ith probe: (h(key) + i2) % TableSize

Another Quadratic Probing Example

0

1

2

3

4

5

6 76

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

ith probe: (h(key) + i2) % TableSize

1/31/2018 27

Another Quadratic Probing Example

0

1

2

3

4

5 40

6 76

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

ith probe: (h(key) + i2) % TableSize

1/31/2018 28

Another Quadratic Probing Example

0 48

1

2

3

4

5 40

6 76

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

ith probe: (h(key) + i2) % TableSize

1/31/2018 29

Another Quadratic Probing Example

0 48

1

2 5

3

4

5 40

6 76

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

ith probe: (h(key) + i2) % TableSize

1/31/2018 30

Another Quadratic Probing Example

0 48

1

2 5

3 55

4

5 40

6 76

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

ith probe: (h(key) + i2) % TableSize

1/31/2018 31

Another Quadratic Probing Example

0 48

1

2 5

3 55

4

5 40

6 76

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

(47 + 1) % 7 = 6 collision!

(47 + 4) % 7 = 2 collision!

(47 + 9) % 7 = 0 collision!

(47 + 16) % 7 = 0 collision!

(47 + 25) % 7 = 2 collision!

Will we ever get a 1 or

4?!?

ith probe: (h(key) + i2) % TableSize

1/31/2018 32

Another Quadratic Probing Example

0 48

1

2 5

3 55

4

5 40

6 76

insert(47) will always fail here. Why?

For all i, (5 + i2) % 7 is 0, 2, 5, or 6

Proof uses induction and

(5 + i2) % 7 = (5 + (i - 7)2) % 7

In fact, for all c and k,

(c + i2) % k = (c + (i - k)2) % k

1/31/2018 33

From bad news to good news

Bad News:

• After TableSize quadratic probes, we cycle through the same

indices

Good News:

• If TableSize is prime and  < ½, then quadratic probing will find an

empty slot in at most TableSize/2 probes

• So: If you keep  < ½ and TableSize is prime, no need to detect

cycles

• Proof posted in lecture11.txt (slightly less detailed proof in textbook)

– For prime T and 0  i,j  T/2 where i  j,

(h(key) + i2) % T  (h(key) + j2) % T

That is, if T is prime, the first T/2 quadratic probes map
to different locations

1/31/2018 34

1/31/2018 35

Quadratic Probing:

Success guarantee for  < ½

• If size is prime and  < ½, then quadratic probing will find
an empty slot in size/2 probes or fewer.
– show for all 0  i,j  size/2 and i  j

(h(x) + i2) mod size  (h(x) + j2) mod size

– by contradiction: suppose that for some i  j:
(h(x) + i2) mod size = (h(x) + j2) mod size

 i2 mod size = j2 mod size

 (i2 - j2) mod size = 0

 [(i + j)(i - j)] mod size = 0

BUT size does not divide (i-j) or (i+j)

How can i+j = 0 or i+j = size when:

i  j and 0  i,j  size/2?

Similarly how can i-j = 0 or i-j = size ?

First size/2 probes

distinct. If < half full,

one is empty.

First size/2

probes will

be distinct,

and if less

than half of

table is full

then after

size/2 probes

you will find

one of those

empty spots

ith probe and

jth probe

One of

these

must

be = 0

when

mod

size

Size would

need to divide

one of these

Clustering reconsidered

• Quadratic probing does not suffer from primary clustering:

As we resolve collisions we are not merely growing “big blobs” by

adding one more item to the end of a cluster, we are looking i2

locations away, for the next possible spot.

• But quadratic probing does not help resolve collisions between

keys that initially hash to the same index

– Any 2 keys that initially hash to the same index will have the

same series of moves after that looking for any empty spot

– Called secondary clustering

• Can avoid secondary clustering with a probe function that

depends on the key: double hashing…

1/31/2018 36

Open Addressing: Double hashing

Idea: Given two good hash functions h and g, it is very unlikely that for
some key, h(key) == g(key)

(h(key) + f(i)) % TableSize

– For double hashing:

f(i) = i*g(key)

– So probe sequence is:

• 0th probe: h(key) % TableSize

• 1st probe: (h(key) + g(key)) % TableSize

• 2nd probe: (h(key) + 2*g(key)) % TableSize

• 3rd probe: (h(key) + 3*g(key)) % TableSize

• …

• ith probe: (h(key) + i*g(key)) % TableSize

• Detail: Make sure g(key) can’t be 0

1/31/2018 37

1/31/2018 38

Open Addressing: Double Hashing

0

1

2

3

4

5

6

7

8

9

Insert these values into the hash table

in this order. Resolve any collisions

with double hashing:

13

28

33

147

43

T = 10 (TableSize)

Hash Functions:

h(key) = key mod T

g(key) = 1 + ((key/T) mod (T-1))

ith probe:(h(key) + i*g(key)) % TableSize

Double Hashing

Insert these values into the hash table in this order. Resolve

any collisions with double hashing:

13

28

33

147

43

T = 10 (TableSize)

Hash Functions:

h(key) = key mod T

g(key) = 1 + ((key/T) mod (T-1))

0

1

2

3 13

4

5

6

7

8

9

1/31/2018 39

ith probe:(h(key) + i*g(key)) % TableSize

Double Hashing

Insert these values into the hash table in this order. Resolve

any collisions with double hashing:

13

28

33

147

43

T = 10 (TableSize)

Hash Functions:

h(key) = key mod T

g(key) = 1 + ((key/T) mod (T-1))

0

1

2

3 13

4

5

6

7

8 28

9

1/31/2018 40

ith probe:(h(key) + i*g(key)) % TableSize

Double Hashing

Insert these values into the hash table in this order. Resolve

any collisions with double hashing:

13

28

33  g(33) = 1 + 3 mod 9 = 4

147

43

T = 10 (TableSize)

Hash Functions:

h(key) = key mod T

g(key) = 1 + ((key/T) mod (T-1))

0

1

2

3 13

4

5

6

7 33

8 28

9

1/31/2018 41

ith probe:(h(key) + i*g(key)) % TableSize

Double Hashing

Insert these values into the hash table in this order. Resolve

any collisions with double hashing:

13

28

33

147  g(147) = 1 + 14 mod 9 = 6

43

T = 10 (TableSize)

Hash Functions:

h(key) = key mod T

g(key) = 1 + ((key/T) mod (T-1))

0

1

2

3 13

4

5

6

7 33

8 28

9 147

1/31/2018 42

ith probe:(h(key) + i*g(key)) % TableSize

Double Hashing

Insert these values into the hash table in this order. Resolve

any collisions with double hashing:

13

28

33

147  g(147) = 1 + 14 mod 9 = 6

43  g(43) = 1 + 4 mod 9 = 5

T = 10 (TableSize)

Hash Functions:

h(key) = key mod T

g(key) = 1 + ((key/T) mod (T-1))

0

1

2

3 13

4

5

6

7 33

8 28

9 147

We have a problem:

3 + 0 = 3 3 + 5 = 8 3 + 10 = 13

3 + 15 = 18 3 + 20 = 23
1/31/2018 43

ith probe:(h(key) + i*g(key)) % TableSize

Double-hashing analysis

• Intuition: Since each probe is “jumping” by g(key) each time,

we “leave the neighborhood” and “go different places from other

initial collisions”

But, as in quadratic probing, we could still have a problem where

we are not "safe" due to an infinite loop despite room in table

– It is known that this cannot happen in at least one case:

For primes p and q such that 2 < q < p

h(key) = key % p

g(key) = q – (key % q)

1/31/2018 44

Yet another reason to use a prime

TableSize

45

• So, for double hashing

ith probe: (h(key) + i*g(key))% TableSize

• Say g(key) divides Tablesize

– That is, there is some integer x such that x*g(key)=Tablesize

– After x probes, we’ll be back to trying the same indices as
before

• Ex:

– Tablesize=50

– g(key)=25

– Probing sequence:

• h(key)

• h(key)+25

• h(key)+50=h(key)

• h(key)+75=h(key)+25

• Only 1 & itself divide a prime

1/31/2018

More double-hashing facts

• Assume “uniform hashing”

– Means probability of g(key1) % p == g(key2) % p is

1/p

• Non-trivial facts we won’t prove:

Average # of probes given  (in the limit as TableSize→)

– Unsuccessful search (intuitive):

– Successful search (less intuitive):

• Bottom line: unsuccessful bad (but not as bad as linear probing),

but successful is not nearly as bad

1/31/2018 46

1

1 

1 1
log

1
e

 

 
 

 

Charts

1/31/2018 47

Where are we?

• Separate Chaining is easy

– find, delete proportional to load factor on average

– insert can be constant if just push on front of list

• Open addressing uses probing, has clustering issues as table fills

Why use it:

– Less memory allocation?

• Some run-time overhead for allocating linked list (or

whatever) nodes; open addressing could be faster

– Easier data representation?

• Now:

– Growing the table when it gets too full (aka “rehashing”)

– Relation between hashing/comparing and connection to Java

1/31/2018 48

Rehashing

• As with array-based stacks/queues/lists, if table gets too full,

create a bigger table and copy everything over

• With separate chaining, we get to decide what “too full” means

– Keep load factor reasonable (e.g., < 1)?

– Consider average or max size of non-empty chains?

• For open addressing, half-full is a good rule of thumb

• New table size

– Twice-as-big is a good idea, except, uhm, that won’t be prime!

– So go about twice-as-big

– Can have a list of prime numbers in your code since you

probably won’t grow more than 20-30 times, and then

calculate after that

1/31/2018 49

More on rehashing

• What if we copy all data to the same indices in the new table?

– Will not work; we calculated the index based on TableSize

• Go through table, do standard insert for each into new table

– Iterate over old table: O(n)

– n inserts / calls to the hash function: n ⋅ O(1) = O(n)

• Is there some way to avoid all those hash function calls?

– Space/time tradeoff: Could store h(key) with each data item

– Growing the table is still O(n); saving h(key) only helps by a

constant factor

1/31/2018 50

Hashing and comparing

• Our use of int key can lead to us overlooking a critical detail:

– We initially hash E to get a table index

– While chaining or probing we need to determine if this is the E

that I am looking for. Just need equality testing.

• So a hash table needs a hash function and a equality testing

– In the Java library each object has an equals method and a

hashCode method

class Object {

boolean equals(Object o) {…}

int hashCode() {…}

…

}

1/31/2018 51

Equal objects must hash the same

• The Java library (and your project hash table) make a very

important assumption that clients must satisfy…

• Object-oriented way of saying it:

If a.equals(b), then we must require

a.hashCode()==b.hashCode()

• Function object way of saying it:

If c.compare(a,b) == 0, then we must require

h.hash(a) == h.hash(b)

• If you ever override equals

– You need to override hashCode also in a consistent way

– See CoreJava book, Chapter 5 for other "gotchas" with equals

1/31/2018 52

By the way: comparison has rules too

We have not emphasized important “rules” about comparison for:

– All our dictionaries

– Sorting (next major topic)

Comparison must impose a consistent, total ordering:

For all a, b, and c,

– If compare(a,b) < 0, then compare(b,a) > 0

– If compare(a,b) == 0, then compare(b,a) == 0

– If compare(a,b) < 0 and compare(b,c) < 0,

then compare(a,c) < 0

1/31/2018 54

A Generally Good hashCode()

int result = 17; // start at a prime

foreach field f

int fieldHashcode =

boolean: (f ? 1: 0)

byte, char, short, int: (int) f

long: (int) (f ^ (f >>> 32))

float: Float.floatToIntBits(f)

double: Double.doubleToLongBits(f), then above

Object: object.hashCode()

result = 31 * result + fieldHashcode;

return result;

1/31/2018 55

Final word on hashing

• The hash table is one of the most important data structures

– Efficient find, insert, and delete

– Operations based on sorted order are not so efficient

– Useful in many, many real-world applications

– Popular topic for job interview questions

• Important to use a good hash function

– Good distribution, Uses enough of key’s values

– Not overly expensive to calculate (bit shifts good!)

• Important to keep hash table at a good size

– Prime #

– Preferable  depends on type of table

• What we skipped: Perfect hashing, universal hash functions,

hopscotch hashing, cuckoo hashing

• Side-comment: hash functions have uses beyond hash tables

– Examples: Cryptography, check-sums

1/31/2018 56

