

# CSE 332: Data Structures & Parallelism Lecture 8: AVL Trees

Ruth Anderson Winter 2018

# Today

- Dictionaries
  - AVL Trees

## The AVL Balance Condition:

Left and right subtrees of every node have heights differing by at most 1

Define: **balance**(x) = height(x.left) – height(x.right)

AVL property:  $-1 \le balance(x) \le 1$ , for every node x

- Ensures small depth
  - Will prove this by showing that an AVL tree of height h must have a lot of (\*roughly\* 2h) nodes
- Easy to maintain
  - Using single and double rotations

Note: height of a null tree is -1, height of tree with a single node is 0

## The AVL Tree Data Structure

## Structural properties

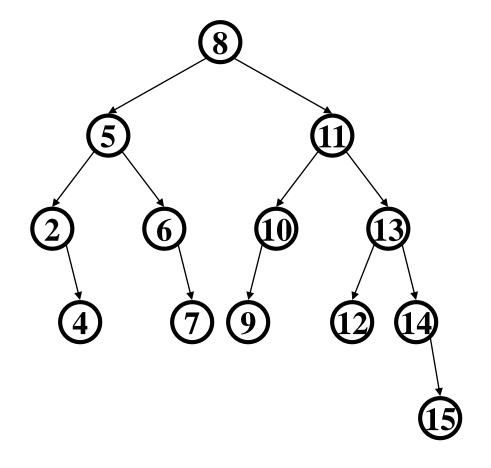
- 1. Binary tree property (0,1, or 2 children)
- 2. Heights of left and right subtrees of every node differ by at most 1

#### Result:

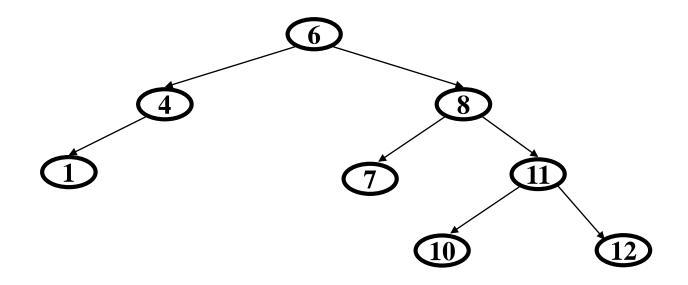
Worst case depth of any node is: O(log *n*)

### Ordering property

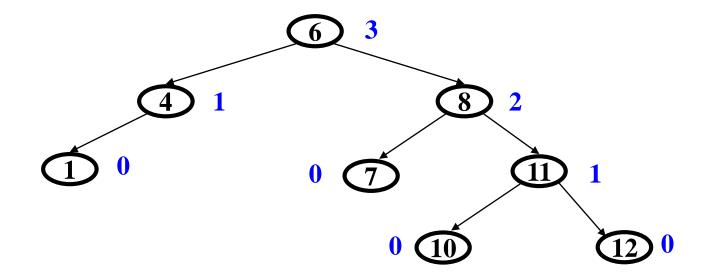
Same as for BST



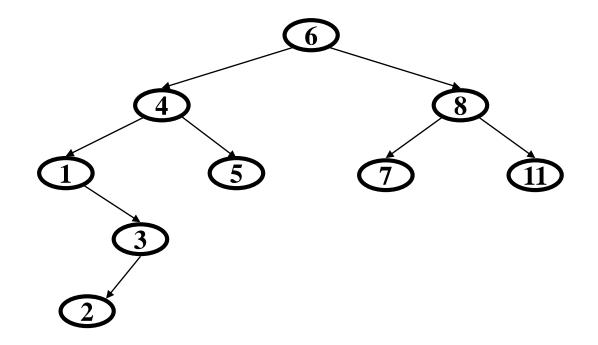
## Ex1: An AVL tree?



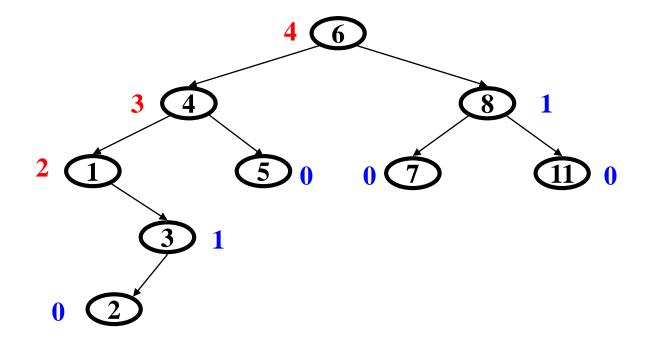
## EX1: An AVL tree?



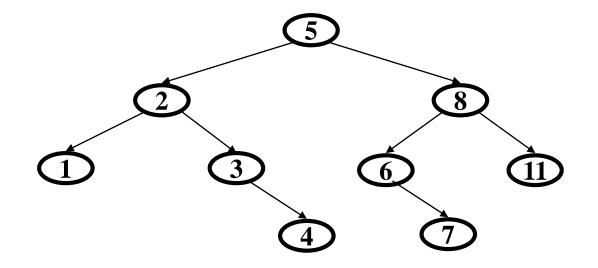
## Ex2: An AVL tree?



## Ex2: An AVL tree?



## Ex3: An AVL tree?



# Height of an AVL Tree?

Using the AVL balance property, we can determine the minimum number of nodes in an AVL tree of height *h* 

Let **s** (h) be the minimum # of nodes in an AVL tree of height h, then:

$$\mathbf{S}(h) = \mathbf{S}(h-1) + \mathbf{S}(h-2) + 1$$
  
where  $\mathbf{S}(-1) = 0$  and  $\mathbf{S}(0) = 1$ 

Solution of Recurrence: S (h)  $\approx 1.62^h$ 

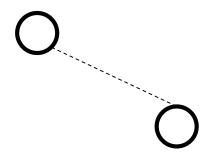
Let **s** (h) be the minimum # of nodes in an AVL tree of height h, then:

$$\mathbf{S}(h) = \mathbf{S}(h-1) + \mathbf{S}(h-2) + 1$$
  
where  $\mathbf{S}(-1) = 0$  and  $\mathbf{S}(0) = 1$ 

S(h)

# Minimal AVL Tree (height = 0)

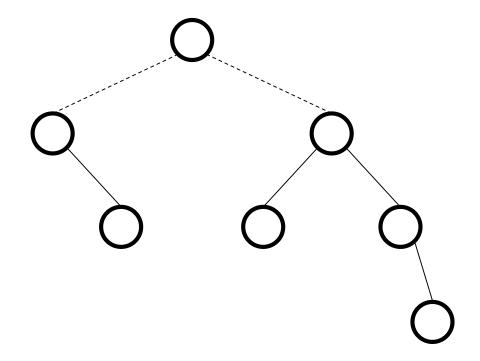
# *Minimal AVL Tree* (height = 1)



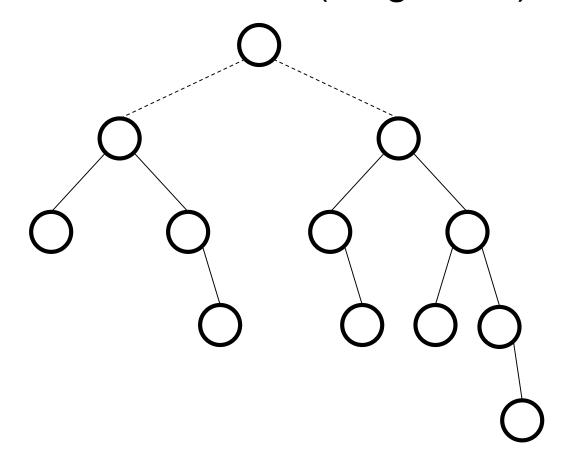
# *Minimal AVL Tree* (height = 2)



# *Minimal AVL Tree* (height = 3)



# *Minimal AVL Tree* (height = 4)



## The shallowness bound

Let S(h) = the minimum number of nodes in an AVL tree of height h

- If we can prove that S(h) grows exponentially in h, then a tree with n nodes has a logarithmic height
- Step 1: Define S(h) inductively using AVL property

$$S(-1)=0$$
,  $S(0)=1$ ,  $S(1)=2$ 

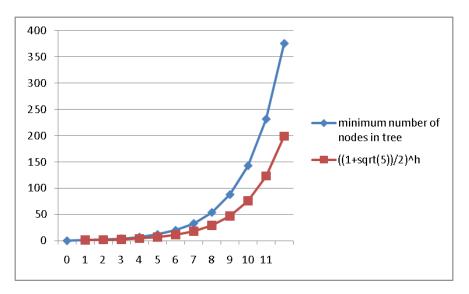
- For 
$$h \ge 1$$
,  $S(h) = 1+S(h-1)+S(h-2)$ 

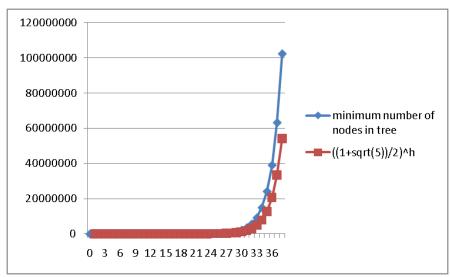


- Step 2: Show this recurrence grows really fast
  - Similar to Fibonacci numbers
  - Can prove for all h,  $S(h) > \phi^h 1$  where  $\phi$  is the golden ratio,  $(1+\sqrt{5})/2$ , about 1.62
  - Growing faster than 1.6<sup>h</sup> is "plenty exponential"

# Before we prove it

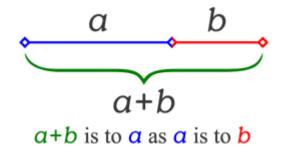
- Good intuition from plots comparing:
  - S(h) computed directly from the definition
  - $-((1+\sqrt{5})/2)^h$
- S(h) is always bigger, up to trees with huge numbers of nodes
  - Graphs aren't proofs, so let's prove it





## The Golden Ratio

$$\phi = \frac{1 + \sqrt{5}}{2} \approx 1.62$$



#### This is a special number

- Aside: Since the Renaissance, many artists and architects have proportioned their work (e.g., length:height) to approximate the golden ratio: If (a+b) /a = a/b, then a = φb
- We will need one special arithmetic fact about φ:

$$\phi^{2} = ((1+5^{1/2})/2)^{2}$$

$$= (1 + 2*5^{1/2} + 5)/4$$

$$= (6 + 2*5^{1/2})/4$$

$$= (3 + 5^{1/2})/2$$

$$= 1 + (1 + 5^{1/2})/2$$

$$= 1 + \phi$$

## The proof

$$S(-1)=0$$
,  $S(0)=1$ ,  $S(1)=2$   
For  $h \ge 1$ ,  $S(h) = 1+S(h-1)+S(h-2)$ 

Theorem: For all  $h \ge 0$ ,  $S(h) > \phi^h - 1$ 

Proof: By induction on h

Base cases:

$$S(0) = 1 > \phi^0 - 1 = 0$$

$$S(1) = 2 > \phi^1 - 1 \approx 0.62$$

Inductive case (k > 1):

Show 
$$S(k+1) > \phi^{k+1} - 1$$
 assuming  $S(k) > \phi^{k} - 1$  and  $S(k-1) > \phi^{k-1} - 1$ 

$$S(k+1) = 1 + S(k) + S(k) + S(k-1)$$
by definition of  $S$  $> 1 + \phi^k - 1 + \phi^{k-1} - 1$ by induction $= \phi^k + \phi^{k-1} - 1$ by arithmetic (1-1=0) $= \phi^{k-1} (\phi + 1) - 1$ by arithmetic (factor  $\phi^{k-1}$ ) $= \phi^{k-1} \phi^2 - 1$ by special property of  $\phi$  $= \phi^{k+1} - 1$ by arithmetic (add exponents)

## Good news

Proof means that if we have an AVL tree, then find is O(log n)

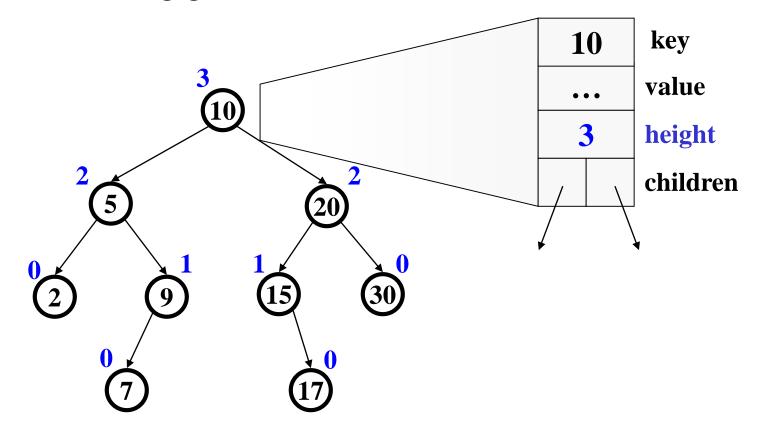
But as we insert and delete elements, we need to:

- 1. Track balance
- 2. Detect imbalance
- 3. Restore balance

(7) (10) (15) (20) (7)

Is this tree AVL balanced?
How about after insert (30)?

# An AVL Tree



# AVL tree operations

- AVL find:
  - Same as BST find
- AVL insert:
  - First BST insert, then check balance and potentially "fix" the AVL tree
  - Four different imbalance cases
- AVL delete:
  - The "easy way" is lazy deletion
  - Otherwise, like insert we do the deletion and then have several imbalance cases

### AVL tree insert

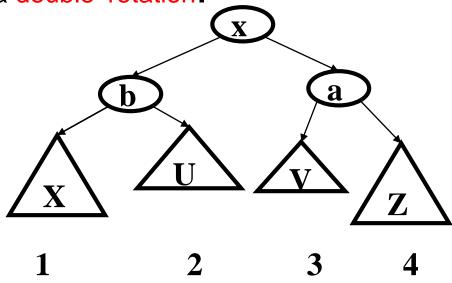
Let x be the node where an imbalance occurs.

Four cases to consider. The insertion is in the

- 1. left subtree of the left child of x.
- 2. right subtree of the left child of x.
- 3. left subtree of the right child of *x*.
- right subtree of the right child of x.

Idea: Cases 1 & 4 are solved by a single rotation.

Cases 2 & 3 are solved by a double rotation.



## Insert: detect potential imbalance

- 1. Insert the new node as in a BST (a new leaf)
- 2. For each node on the path from the root to the new leaf, the insertion may (or may not) have changed the node's height
- 3. So after recursive insertion in a subtree, detect height imbalance and perform a *rotation* to restore balance at that node

All the action is in defining the correct rotations to restore balance

#### Fact that makes it a bit easier:

- There must be a deepest element that is imbalanced after the insert (all descendants still balanced)
- After rebalancing this deepest node, every node is balanced
- So at most one node needs to be rebalanced

# Case #1 Example

Insert(6)

Insert(3)

Insert(1)

# Case #1: Example

Insert(6)

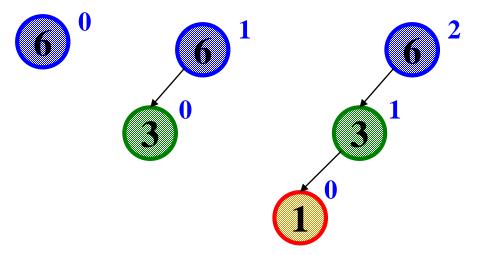
Insert(3)

Insert(1)

Third insertion violates balance property

happens to be at the root

What is the only way to fix this?



# Fix: Apply "Single Rotation"

- Single rotation: The basic operation we'll use to rebalance
  - Move child of unbalanced node into parent position
  - Parent becomes the "other" child (always okay in a BST!)
  - Other subtrees move in only way BST allows (next slide)

AVL Property violated here

Single Rotation:

1. Rotate between self and child

1. Rotate between self and child

## RotateRight brings up the right child

```
Single Rotation Pseudo-Code
                                               root
                                                    temp
void RotateWithRight(Node root) {
 Node temp = root.right
  root.right = temp.left
  temp.left = root
  root.height = max(root.right.height(),
                    root.left.height()) + 1
  temp.height = max(temp.right.height(),
                    temp.left.height()) + 1
 root = temp
```

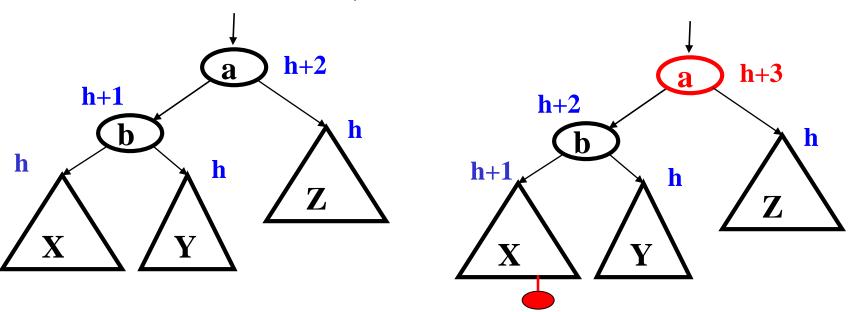
**Notational note:** 

Oval: a node in the tree

Triangle: a subtree

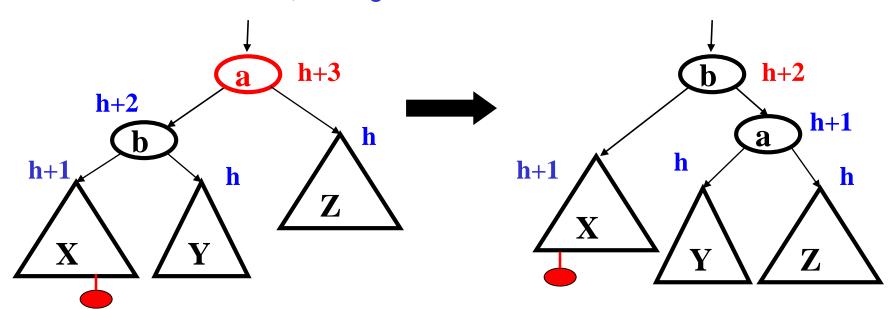
# The example generalized

- Node imbalanced due to insertion somewhere in left-left grandchild increasing height
  - 1 of 4 possible imbalance causes (other three coming)
- First we did the insertion, which would make a imbalanced



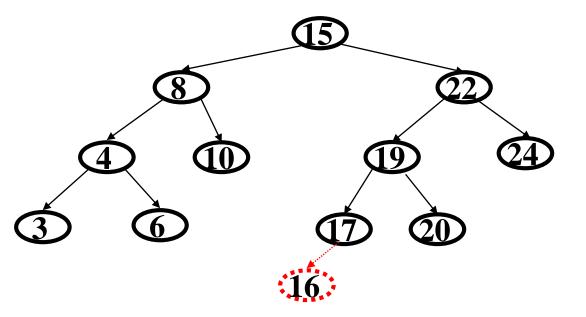
## The general left-left case

- Node imbalanced due to insertion somewhere in left-left grandchild increasing height
  - 1 of 4 possible imbalance causes (other three coming)
- So we rotate at a, using BST facts: X < b < Y < a < Z</li>

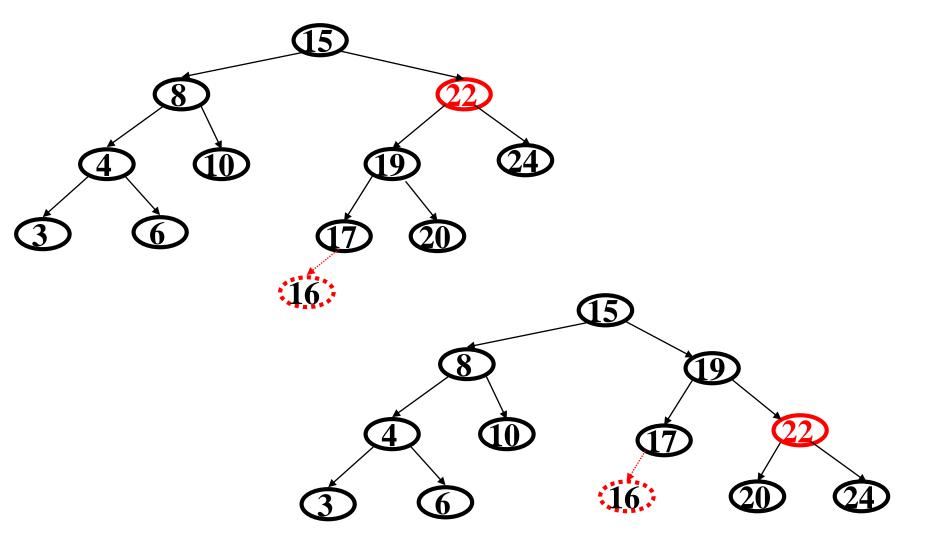


- A single rotation restores balance at the node
  - To same height as before insertion (so ancestors now balanced)

# Another example: insert(16)

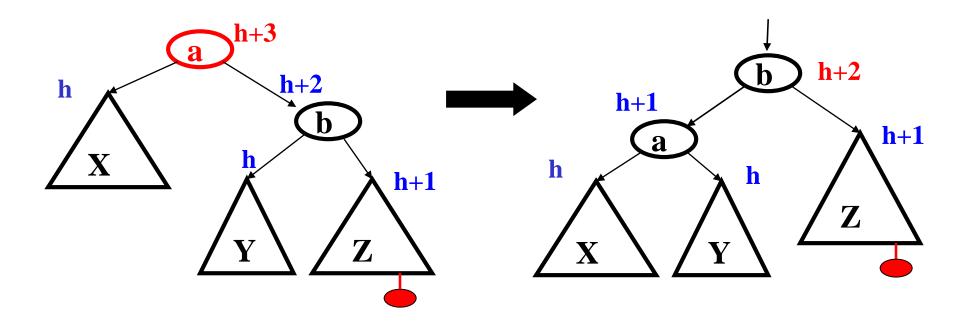


# Another example: insert (16)



# The general right-right case

- Mirror image to left-left case, so you rotate the other way
  - Exact same concept, but need different code



# Case #3 Example

Insert(1)

Insert(6)

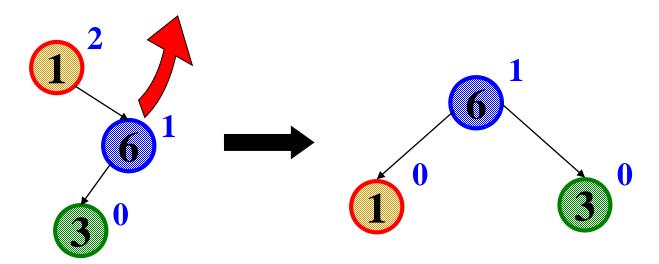
Insert(3)

# Two cases to go

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)

First wrong idea: single rotation like we did for left-left

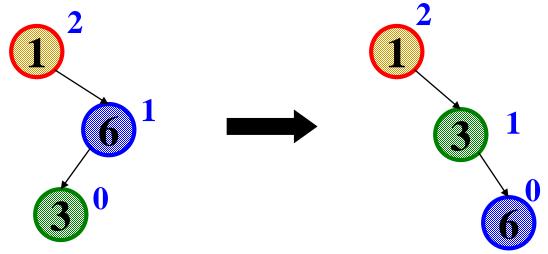


## Two cases to go

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)

 Second wrong idea: single rotation on the child of the unbalanced node

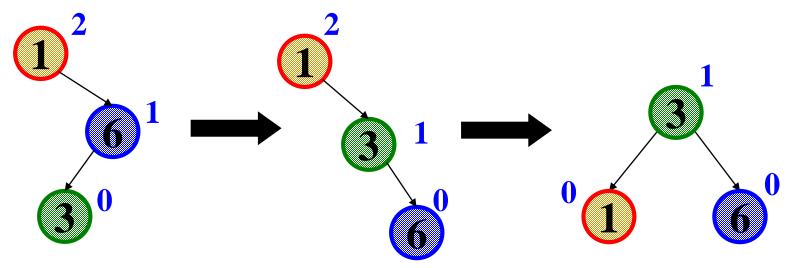


## Sometimes two wrongs make a right @

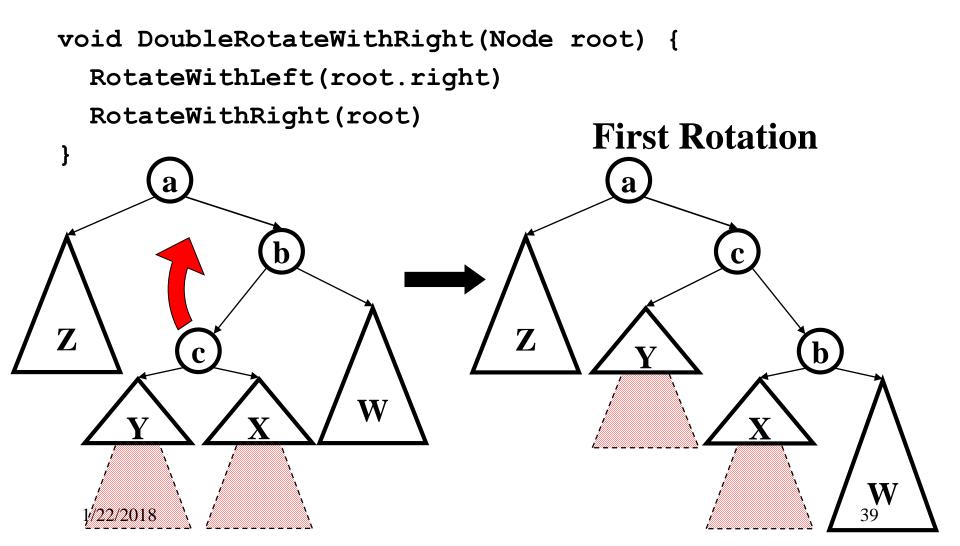
- First idea violated the BST property
- Second idea didn't fix balance
- But if we do both single rotations, starting with the second, it works! (And not just for this example.)

#### **Double rotation:**

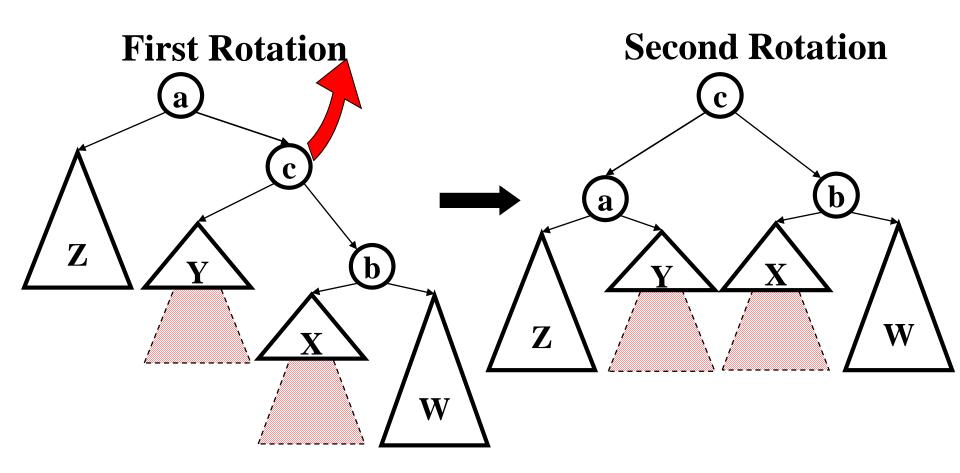
- 1. Rotate problematic child and grandchild
- 2. Then rotate between self and new child



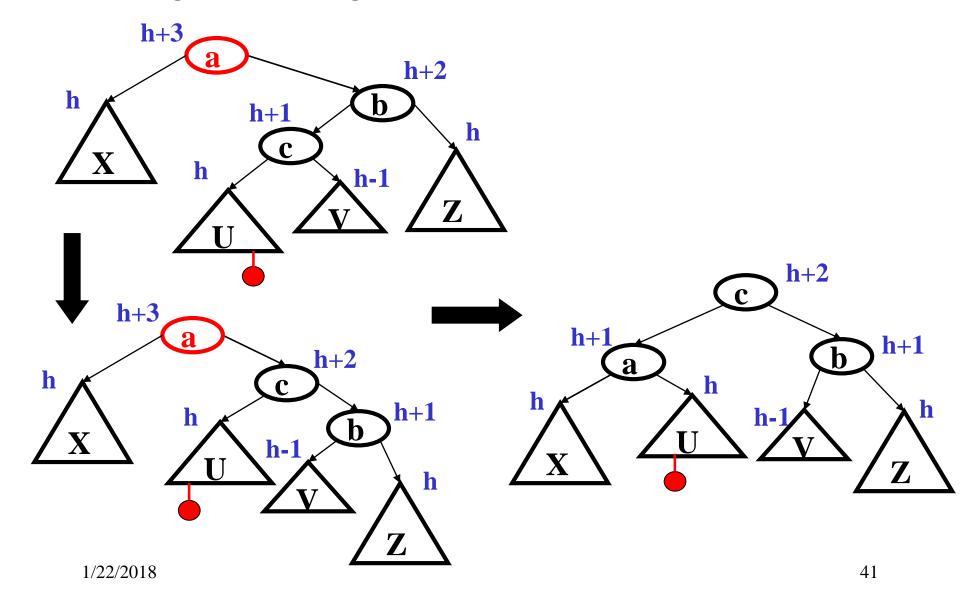
### Double Rotation Pseudo-Code



# Double Rotation Completed

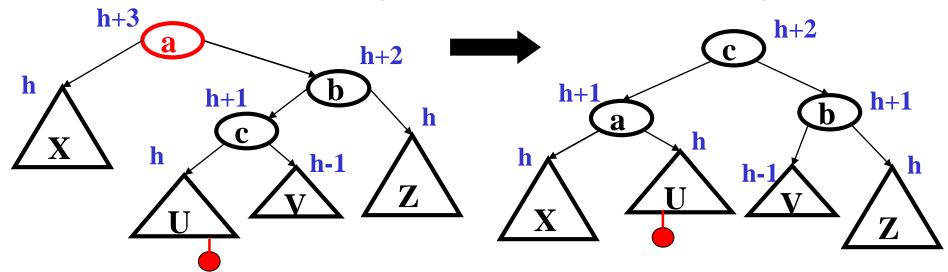


# The general right-left case



### Comments

- Like in the left-left and right-right cases, the height of the subtree after rebalancing is the same as before the insert
  - So no ancestor in the tree will need rebalancing
- Does not have to be implemented as two rotations; can just do:

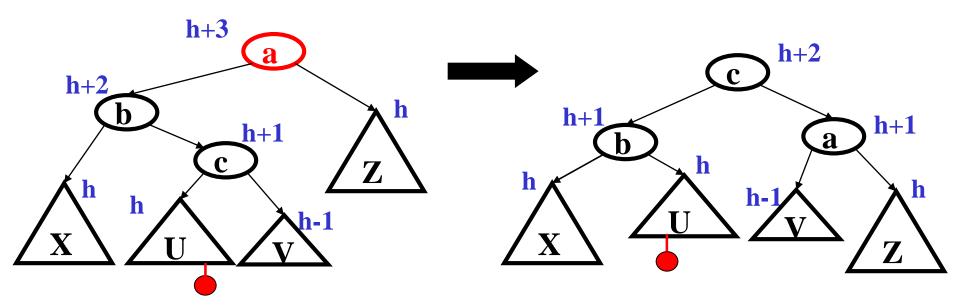


Easier to remember than you may think:

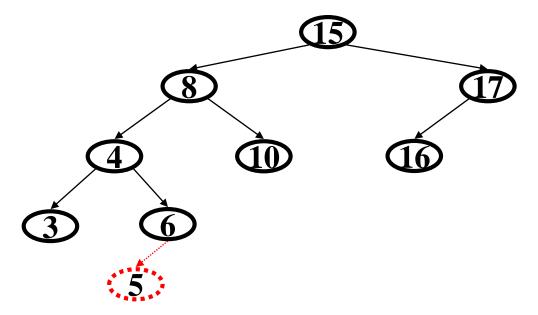
Move c to grandparent's position and then put a, b, X, U, V, and Z in the only legal positions for a BST

## The last case: left-right

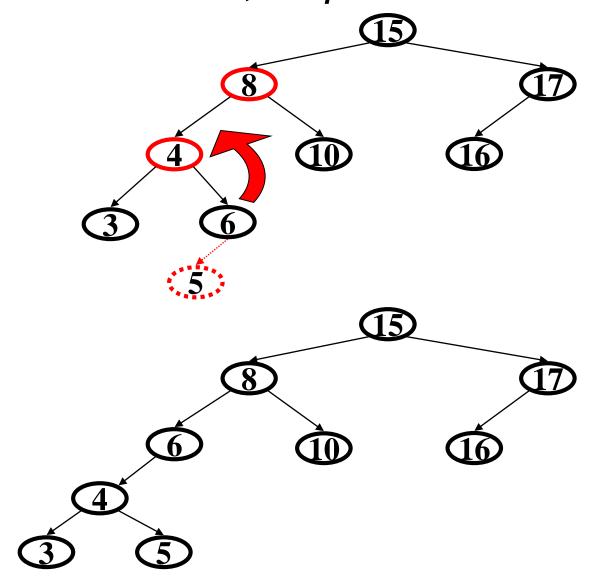
- Mirror image of right-left
  - Again, no new concepts, only new code to write



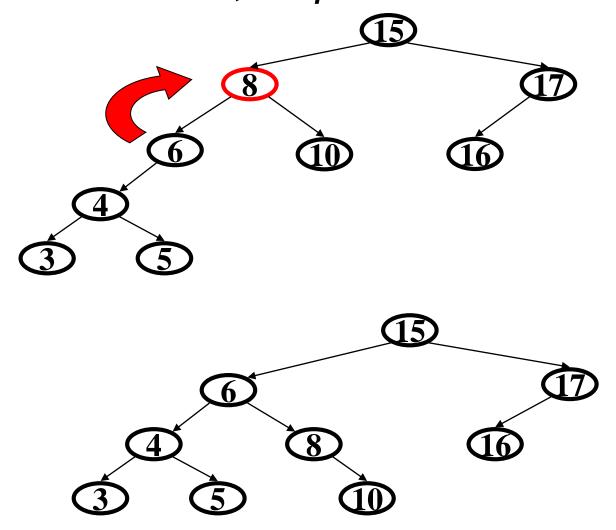
### Insert 5



# Double rotation, step 1



# Double rotation, step 2



### Insert, summarized

- Insert as in a BST
- Check back up path for imbalance, which will be 1 of 4 cases:
  - node's left-left grandchild is too tall
  - node's left-right grandchild is too tall
  - node's right-left grandchild is too tall
  - node's right-right grandchild is too tall
- Only one case occurs because tree was balanced before insert
- After the appropriate single or double rotation, the smallestunbalanced subtree has the same height as before the insertion
  - So all ancestors are now balanced

1/22/2018 47

## Now efficiency

- Worst-case complexity of find:
  - Tree is balanced
- Worst-case complexity of insert: \_\_\_\_\_\_
  - Tree starts balanced
  - A rotation is O(1) and there's an  $O(\log n)$  path to root
  - (Same complexity even without one-rotation-is-enough fact)
  - Tree ends balanced
- Worst-case complexity of buildTree:
- delete? (see 3 ed. Weiss) requires more rotations:
- Lazy deletion?

## Now efficiency

- Worst-case complexity of find: O(log n)
  - Tree is balanced
- Worst-case complexity of insert: O(log n)
  - Tree starts balanced
  - A rotation is O(1) and there's an  $O(\log n)$  path to root
  - (Same complexity even without one-rotation-is-enough fact)
  - Tree ends balanced
- Worst-case complexity of buildTree: O(n log n)
- delete? (see 3 ed. Weiss) requires more rotations: O(log n)

### Pros and Cons of AVL Trees

#### Arguments for AVL trees:

- All operations logarithmic worst-case because trees are always balanced
- 2. Height balancing adds no more than a constant factor to the speed of insert and delete

#### Arguments against AVL trees:

- 1. Difficult to program & debug
- More space for height field
- 3. Asymptotically faster but rebalancing takes a little time
- Most large searches are done in database-like systems on disk and use other structures (e.g., B-trees, our next data structure)

# More Examples...

### Insert into an AVL tree: a b e c d

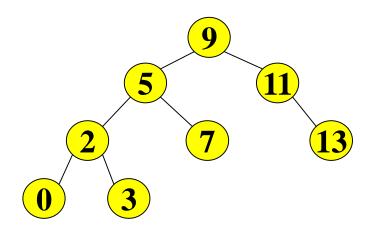
# Single and Double Rotations:

Inserting what integer values would cause the tree to need a.

1. single rotation?

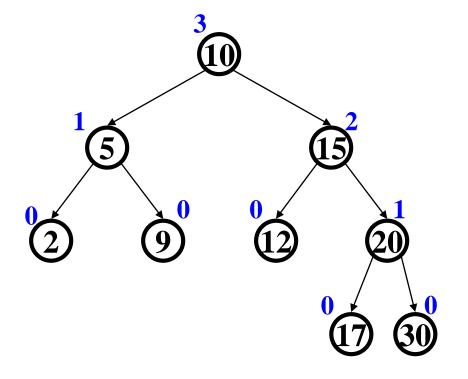
2. double rotation?

3. no rotation?



# Easy Insert

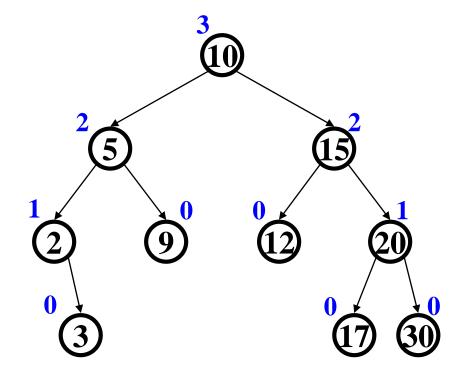
Insert(3)



#### **Unbalanced?**

### Hard Insert

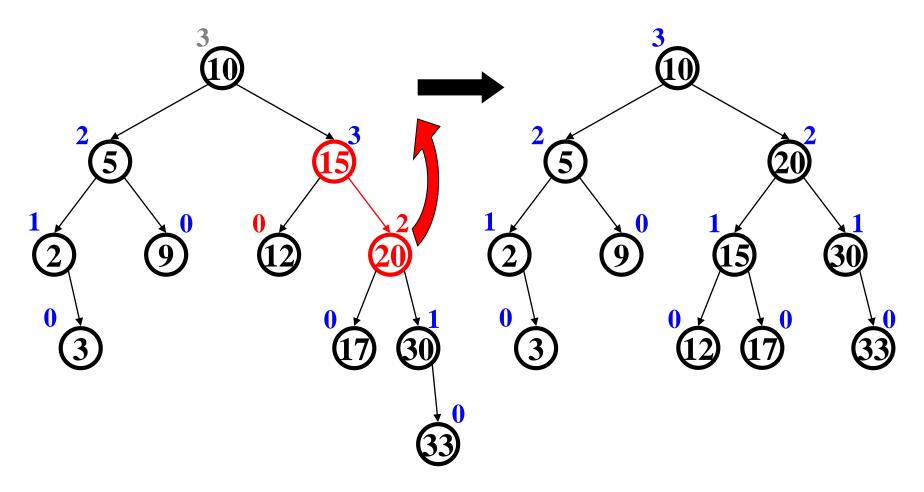
**Insert(33)** 



### **Unbalanced?**

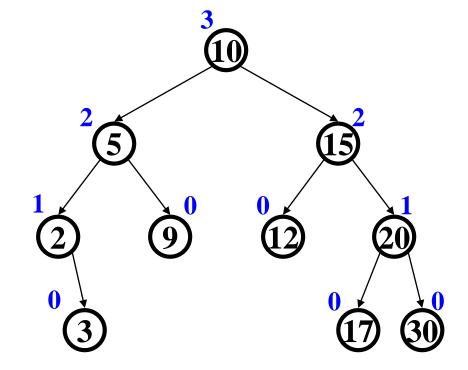
#### How to fix?

# Single Rotation



### Hard Insert

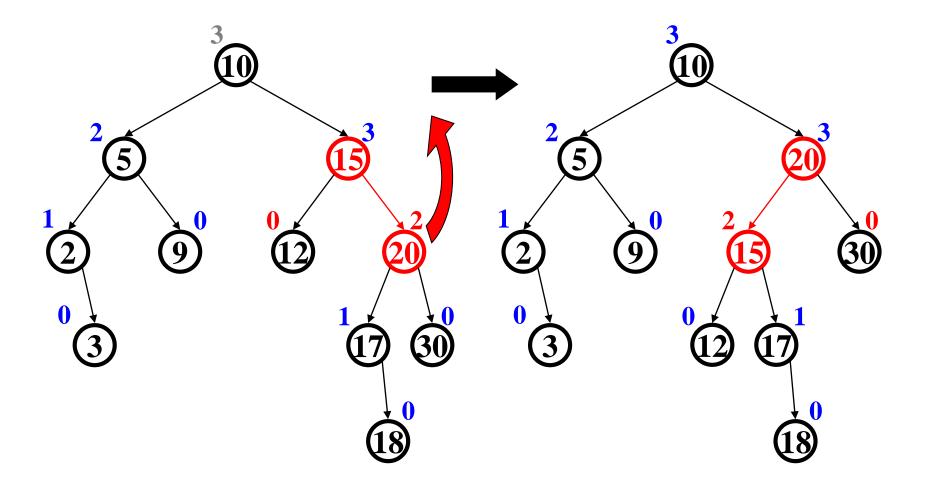
**Insert(18)** 



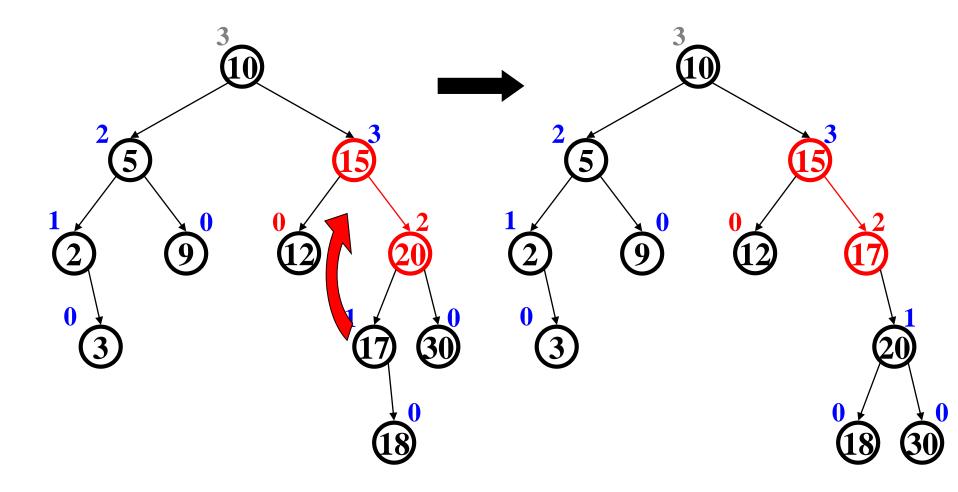
**Unbalanced?** 

How to fix?

## Single Rotation (oops!)



## Double Rotation (Step #1)



## Double Rotation (Step #2)

