CSE 332: Data Structures & Parallelism
Lecture 7: Dictionaries; Binary Search Trees

Ruth Anderson
Winter 2018
Today

- Dictionaries
- Trees
Where we are

Studying the absolutely essential ADTs of computer science and classic data structures for implementing them

ADTs so far:

1. Stack: \(\text{push, pop, isEmpty, ...}\)
2. Queue: \(\text{enqueue, dequeue, isEmpty, ...}\)
3. Priority queue: \(\text{insert, deleteMin, ...}\)

Next:

 - probably the most common, way more than priority queue
The Dictionary (a.k.a. Map) ADT

Data:
• set of (key, value) pairs
• keys must be comparable

Operations:
• insert(key,val):
 – places (key,val) in map
 (If key already used, overwrites existing entry)
• find(key):
 – returns val associated with key
• delete(key)

We will tend to emphasize the keys, but don’t forget about the stored values!
Comparison: Set ADT vs. Dictionary ADT

The Set ADT is like a Dictionary without any values
 – A key is *present* or not (no repeats)

For *find*, *insert*, *delete*, there is little difference
 – In dictionary, values are “just along for the ride”
 – So *same data-structure ideas* work for dictionaries and sets
 • Java HashSet implemented using a HashMap, for instance

Set ADT may have other important operations
 – *union*, *intersection*, *is_subset*, etc.
 – Notice these are binary operators on sets
 – We will want different data structures to implement these operators
A Modest Few Uses for Dictionaries

Any time you want to store information according to some key and be able to retrieve it efficiently – a **dictionary** is the ADT to use!

– Lots of programs do that!

- Networks: router tables
- Operating systems: page tables
- Compilers: symbol tables
- Databases: dictionaries with other nice properties
- Search: inverted indexes, phone directories, …
- Biology: genome maps
- ...
Simple implementations

For dictionary with n key/value pairs

- Unsorted linked-list
- Unsorted array
- Sorted linked list
- Sorted array

We’ll see a Binary Search Tree (BST) probably does better, but not in the worst case unless we keep it balanced
Simple implementations

For dictionary with n key/value pairs

<table>
<thead>
<tr>
<th></th>
<th>insert</th>
<th>find</th>
<th>delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted linked-list</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Unsorted array</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sorted linked list</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sorted array</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

We’ll see a Binary Search Tree (BST) probably does better, but not in the worst case unless we keep it balanced

*Note: If we allow duplicates values to be inserted, you could do these in $O(1)$ because you do not need to check for a key’s existence before insertion.
Lazy Deletion (e.g. in a sorted array)

<table>
<thead>
<tr>
<th>10</th>
<th>12</th>
<th>24</th>
<th>30</th>
<th>41</th>
<th>42</th>
<th>44</th>
<th>45</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

A general technique for making **delete** as fast as **find**:

- Instead of actually removing the item just mark it deleted
- No need to shift values, etc.

Plusses:

- Simpler
- Can do removals later in batches
- If re-added soon thereafter, just unmark the deletion

Minuses:

- Extra space for the “is-it-deleted” flag
- Data structure full of deleted nodes wastes space
- **find** $O(\log m)$ time where m is data-structure size ($m \geq n$)
- May complicate other operations
Better Dictionary data structures

Will spend the next several lectures looking at dictionaries with three different data structures

1. AVL trees
 – Binary search trees with guaranteed balancing
2. B-Trees
 – Also always balanced, but different and shallower
 – B≠Binary; B-Trees generally have large branching factor
3. Hashtables
 – Not tree-like at all

Skipping: Other balanced trees (red-black, splay)
Why Trees?

Trees offer speed ups because of their branching factors
• Binary Search Trees are structured forms of binary search
Binary Search

find(4)

1 3 4 5 7 8 9 10
Binary Search Tree

Our goal is the performance of binary search in a tree representation.
Why Trees?

Trees offer speed ups because of their branching factors
- Binary Search Trees are structured forms of *binary search*

Even a basic BST is fairly good

<table>
<thead>
<tr>
<th></th>
<th>Insert</th>
<th>Find</th>
<th>Delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worse-Case</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Average-Case</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
</tbody>
</table>

1/18/2018
Binary Trees

- Binary tree is empty or
 - a root \((\text{with data})\)
 - a left subtree \((\text{maybe empty})\)
 - a right subtree \((\text{maybe empty})\)

- Representation:

- For a dictionary, data will include a key and a value
Binary Tree: Some Numbers

Recall: height of a tree = longest path from root to leaf (count # of edges)

For binary tree of height h:
- max # of leaves:
 - max # of nodes:
- min # of leaves:
 - min # of nodes:
Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:
- max # of leaves: 2^h
- max # of nodes: $2^{(h + 1)} - 1$
- min # of leaves: 1
- min # of nodes: $h + 1$

For n nodes, we cannot do better than $O(\log n)$ height, and we want to avoid $O(n)$ height
Calculating height

What is the height of a tree with root root?

```java
int treeHeight(Node root) {
    ???
}
```
Calculating height

What is the height of a tree with root r?

```java
int treeHeight(Node root) {
    if (root == null)
        return -1;
    return 1 + max(treeHeight(root.left),
                    treeHeight(root.right));
}
```

Running time for tree with n nodes: $O(n)$ – single pass over tree

Note: non-recursive is painful – need your own stack of pending nodes; much easier to use recursion’s call stack
Tree Traversals

A *traversal* is an order for visiting all the nodes of a tree

- **Pre-order:** root, left subtree, right subtree
- **In-order:** left subtree, root, right subtree
- **Post-order:** left subtree, right subtree, root

(an expression tree)
Tree Traversals

A traversal is an order for visiting all the nodes of a tree

- **Pre-order:** root, left subtree, right subtree
 \[+ * 2 4 5\]
- **In-order:** left subtree, root, right subtree
 \[2 * 4 + 5\]
- **Post-order:** left subtree, right subtree, root
 \[2 4 * 5 +\]
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        traverse(t.left);
        process(t.element);
        traverse(t.right);
    }
}
```

Sometimes order doesn’t matter
- Example: sum all elements

Sometimes order matters
- Example: print tree with parent above indented children (pre-order)
- Example: evaluate an expression tree (post-order)
Binary Search Tree

- Structural property ("binary")
 - each node has \(\leq 2 \) children
 - result: keeps operations simple

- Order property
 - all keys in left subtree smaller than node’s key
 - all keys in right subtree larger than node’s key
 - result: easy to find any given key
Are these BSTs?
Are these BSTs?

Yes

No
Find in BST, Recursive

Data `find(Key key, Node root)`{
 if(root == null)
 return null;
 if(key < root.key)
 return find(key,root.left);
 if(key > root.key)
 return find(key,root.right);
 return root.data;
}
Find in BST, Iterative

```java
data find(Key key, Node root) {
  while (root != null && root.key != key) {
    if (key < root.key)
      root = root.left;
    else (key > root.key)
      root = root.right;
  }
  if (root == null)
    return null;
  return root.data;
}
```
Other “finding operations”

• Find minimum node

• Find maximum node
Insert in BST

```
insert(13)
insert(8)
insert(31)
```

(New) insertions happen only at leaves – easy!

1. Find
2. Create a new node
Deletion in BST

Why might deletion be harder than insertion?
Deletion

- Removing an item disrupts the tree structure

- Basic idea:
 - find the node to be removed,
 - Remove it
 - “fix” the tree so that it is still a binary search tree

- Three cases:
 - node has no children (leaf)
 - node has one child
 - node has two children
Deletion – The Leaf Case

delete(17)
Deletion – The One Child Case

delete(15)
Deletion – The Two Child Case

What can we replace 5 with?

delete(5)
Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

Options:
- *successor* from right subtree: \(\text{findMin}(\text{node.right}) \)
- *predecessor* from left subtree: \(\text{findMax}(\text{node.left}) \)
 - These are the easy cases of predecessor/successor

Now delete the original node containing *successor* or *predecessor*
- Leaf or one child case – easy cases of delete!
Delete Using Successor

findMin(right sub tree) → 7

delete(5)
Delete Using Predecessor

findMax(left sub tree) \rightarrow 2

delete(5)
BuildTree for BST

• We had buildHeap, so let’s consider buildTree

• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
 – If inserted in given order, what is the tree?
 – What big-O runtime for this kind of sorted input?
 – Is inserting in the reverse order any better?
BuildTree for BST

• We had `buildHeap`, so let's consider `buildTree`

• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

 – If inserted in given order, what is the tree?

 – What big-O runtime for this kind of sorted input?

 – Is inserting in the reverse order any better?

1

2

3

$O(n^2)$

Not a happy place
Balanced BST

Observation

- BST: the shallower the better!
- For a BST with n nodes inserted in arbitrary order
 - Average height is $O(\log n)$ – see text for proof
 - Worst case height is $O(n)$
- Simple cases such as inserting in key order lead to the worst-case scenario

Solution: Require a **Balance Condition** that

1. ensures depth is always $O(\log n)$ – strong enough!
2. is easy to maintain – not too strong!
Potential Balance Conditions

1. Left and right subtrees of the \textit{root} have equal number of nodes

2. Left and right subtrees of the \textit{root} have equal \textit{height}
Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes

Too weak!
Height mismatch example:

2. Left and right subtrees of the root have equal height

Too weak!
Double chain example:
Potential Balance Conditions

3. Left and right subtrees of every node have equal number of nodes

4. Left and right subtrees of every node have equal height
Potential Balance Conditions

3. Left and right subtrees of every node have equal number of nodes

 Too strong!
 Only perfect trees ($2^n - 1$ nodes)

4. Left and right subtrees of every node have equal height

Too strong!
Only perfect trees ($2^n - 1$ nodes)
The AVL Balance Condition

Left and right subtrees of every node have heights differing by at most 1

Definition: \(\text{balance}(\text{node}) = \text{height}(\text{node.left}) - \text{height}(\text{node.right}) \)

AVL property: for every node \(x \), \(-1 \leq \text{balance}(x) \leq 1\)

- Ensures small depth
 - Will prove this by showing that an AVL tree of height \(h \) must have a number of nodes exponential in \(h \)

- Easy (well, efficient) to maintain
 - Using single and double rotations