
CSE 332: Data Structures & Parallelism

Lecture 5: Algorithm Analysis II

Ruth Anderson

Winter 2018

Today

• Finish up Binary Heaps

• Analyzing Recursive Code

• Solving Recurrences

1/12/2018 2

Analyzing code (“worst case”)

Basic operations take “some amount of” constant time

– Arithmetic (fixed-width)

– Assignment

– Access one Java field or array index

– Etc.

(This is an approximation of reality: a very useful “lie”.)

Consecutive statements Sum of time of each statement

Conditionals Time of condition plus time of

slower branch

Loops Num iterations * time for loop body

Function Calls Time of function’s body

Recursion Solve recurrence equation

1/12/2018 3

Linear search

Find an integer in a sorted array

2 3 5 16 37 50 73 75 126

// requires array is sorted

// returns whether k is in array

boolean find(int[]arr, int k){

for(int i=0; i < arr.length; ++i)

if(arr[i] == k)

return true;

return false;

}

Best case: 6 “ish” steps = O(1)

Worst case: 5 “ish” * (arr.length)

= O(arr.length)

1/12/2018 4

Analyzing Recursive Code

• Computing run-times gets interesting with recursion

• Say we want to perform some computation recursively on a list of

size n

– Conceptually, in each recursive call we:

• Perform some amount of work, call it w(n)

• Call the function recursively with a smaller portion of the list

• So, if we do w(n) work per step, and reduce the problem size in

the next recursive call by 1, we do total work:

T(n)=w(n)+T(n-1)

• With some base case, like T(1)=5=O(1)

1/12/2018 5

Example Recursive code: sum array

Each time help is called, it does that O(1) amount of work, and

then calls help again on a problem one less than previous

problem size.

Recurrence Relation: T(n) = O(1) + T(n-1)

int sum(int[] arr){
return help(arr,0);

}
int help(int[]arr,int i) {
if(i==arr.length)
return 0;

return arr[i] + help(arr,i+1);
}

Recursive:

– Recurrence is

some constant

amount of work

O(1) done n

times

1/12/2018 6

Solving Recurrence Relations
• Say we have the following recurrence relation:

T(n)=6 “ish”+T(n-1)

T(1)=9 “ish” base case

• Now we just need to solve it; that is, reduce it to a closed form.

• Start by writing it out:

T(n)=6+T(n-1)

=6+6+T(n-2)

=6+6+6+T(n-3)

=6+6+6+…+6+T(1) = 6+6+6+…+6+9

=6k+T(n-k)

=6k+9, where k is the # of times we expanded T()

• We expanded it out n-1 times, so

T(n)=6k+T(n-k)

=6(n-1)+T(1) = 6(n-1)+9

=6n+3 = O(n)

Or When does n-k=1?

Answer: when k=n-1

1/12/2018 7

Binary search

Find an integer in a sorted array

– Can also be done non-recursively but “doesn’t matter” here

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){

return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {

int mid = (hi+lo)/2; //i.e., lo+(hi-lo)/2
if(lo==hi) return false;
if(arr[mid]==k) return true;
if(arr[mid]< k) return help(arr,k,mid+1,hi);
else return help(arr,k,lo,mid);

}

Best case:

Worst case:

1/12/2018 8

Binary search

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){

return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {

int mid = (hi+lo)/2;
if(lo==hi) return false;
if(arr[mid]==k) return true;
if(arr[mid]< k) return help(arr,k,mid+1,hi);
else return help(arr,k,lo,mid);

}

Best case: 9 “ish” steps = O(1)

Worst case: T(n) = 10 “ish” + T(n/2) where n is hi-lo

• O(log n) where n is array.length

• Solve recurrence equation to know that…

1/12/2018 9

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?

– T(n) = 10 + T(n/2) T(1) = 15

2. “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.

3. Find a closed-form expression by setting the number of
expansions to a value which reduces the problem to a base case

1/12/2018 10

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?

– T(n) = 10 + T(n/2) T(1) = 15

2. “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.

– T(n) = 10 + 10 + T(n/4)

= 10 + 10 + 10 + T(n/8)

= …

= 10k + T(n/(2k)) (where k is the number of expansions)

3. Find a closed-form expression by setting the number of
expansions to a value which reduces the problem to a base case

– n/(2k) = 1 means n = 2k means k = log2 n

– So T(n) = 10 log2 n + 15 (get to base case and do it)

– So T(n) is O(log n)

1/12/2018 11

sum array again

Two “obviously” linear algorithms: T(n) = O(1) + T(n-1)

int sum(int[] arr){
int ans = 0;
for(int i=0; i<arr.length; ++i)

ans += arr[i];
return ans;

}

int sum(int[] arr){
return help(arr,0);

}
int help(int[]arr,int i) {
if(i==arr.length)
return 0;

return arr[i] + help(arr,i+1);
}

Recursive:

– Recurrence is

c + c + … + c

for n times

Iterative:

1/12/2018 12

What about a binary version of sum?

int sum(int[] arr){
return help(arr,0,arr.length);

}
int help(int[] arr, int lo, int hi) {

if(lo==hi) return 0;
if(lo==hi-1) return arr[lo];
int mid = (hi+lo)/2;
return help(arr,lo,mid) + help(arr,mid,hi);

}

1/12/2018 13

What about a binary version of sum?

Recurrence is T(n) = O(1) + 2T(n/2)

– 1 + 2 + 4 + 8 + … for log n times

– 2(log n) – 1 which is proportional to n (by definition of logarithm)

Easier explanation: it adds each number once while doing little else

“Obvious”: You can’t do better than O(n) – have to read whole array

int sum(int[] arr){
return help(arr,0,arr.length);

}
int help(int[] arr, int lo, int hi) {

if(lo==hi) return 0;
if(lo==hi-1) return arr[lo];
int mid = (hi+lo)/2;
return help(arr,lo,mid) + help(arr,mid,hi);

}

1/12/2018 14

Parallelism teaser

• But suppose we could do two recursive calls at the same time

– Like having a friend do half the work for you!

int sum(int[]arr){
return help(arr,0,arr.length);

}
int help(int[]arr, int lo, int hi) {

if(lo==hi) return 0;
if(lo==hi-1) return arr[lo];
int mid = (hi+lo)/2;
return help(arr,lo,mid) + help(arr,mid,hi);

}

• If you have as many “friends of friends” as needed, the recurrence

is now T(n) = O(1) + 1T(n/2)

– O(log n) : same recurrence as for find

1/12/2018 15

Really common recurrences

Should know how to solve recurrences but also recognize some

really common ones:

T(n) = O(1) + T(n-1) linear

T(n) = O(1) + 2T(n/2) linear

T(n) = O(1) + T(n/2) logarithmic

T(n) = O(1) + 2T(n-1) exponential

T(n) = O(n) + T(n-1) quadratic

T(n) = O(n) + T(n/2) linear

T(n) = O(n) + 2T(n/2) O(n log n)

Note big-Oh can also use more than one variable

• Example: can sum all elements of an n-by-m matrix in O(nm)

1/12/2018 16

