
CSE 332: Data Structures & Parallelism

Lecture 4: Binary Heaps, Continued

Ruth Anderson

Winter 2018

Today

• Binary Min Heap implementation

– Insert

– Deletemin

– Buildheap

1/10/2018 2

Review

• Priority Queue ADT: insert comparable object, deleteMin

• Binary heap data structure: Complete binary tree where each

node has priority value greater than its parent

• O(height-of-tree)=O(log n) insert and deleteMin operations

– insert: put at new last position in tree and percolate-up

– deleteMin: remove root, put last element at root and

percolate-down

• But: tracking the “last position” is painful and we can do better

1/10/2018

insert deleteMin

6 2

15 23

12 18

45 3 7 996040

8020

10

700 50

85

3

1/10/2018

Array Representation of Binary Trees

GED

CB

A

J KH I

F

L

From node i:

left child: i*2

right child: i*2+1

parent: i/2

(wasting index 0 is

convenient for the

index arithmetic)

7

1

2 3

4 5 6

98 10 11 12

A B C D E F G H I J K L

0 1 2 3 4 5 6 7 8 9 10 11 12 13

implicit (array) implementation:

4

http://xkcd.com/163

1/10/2018 5

Pseudocode: insert
void insert(int val) {

if(size==arr.length-1)

resize();

size++;

i=percolateUp(size,val);

arr[i] = val;

}

int percolateUp(int hole,
int val) {

while(hole > 1 &&
val < arr[hole/2]){

arr[hole] = arr[hole/2];
hole = hole / 2;

}
return hole;

}

996040

8020

10

700 50

85

10 20 80 40 60 85 99 700 50

0 1 2 3 4 5 6 7 8 9 10 11 12 13

This pseudocode uses ints. In real use,

you will have data nodes with priorities.

1/10/2018 6

Pseudocode: deleteMin

int deleteMin() {

if(isEmpty()) throw…

ans = arr[1];

hole = percolateDown

(1,arr[size]);

arr[hole] = arr[size];

size--;

return ans;

}

int percolateDown(int hole,
int val) {

while(2*hole <= size) {
left = 2*hole;
right = left + 1;
if(arr[left] < arr[right]

|| right > size)
target = left;

else
target = right;

if(arr[target] < val) {
arr[hole] = arr[target];
hole = target;

} else
break;

}
return hole;

}

996040

8020

10

700 50

85

10 20 80 40 60 85 99 700 50

0 1 2 3 4 5 6 7 8 9 10 11 12 13

This pseudocode uses ints. In real use,

you will have data nodes with priorities.

1/10/2018 7

Example

1. insert: 16, 32, 4, 69, 105, 43, 2

2. deleteMin

1/10/2018

0 1 2 3 4 5 6 7

8

Example: After insertion

1. insert: 16, 32, 4, 69, 105, 43, 2

2. deleteMin

2 32 4 69 105 43 16

0 1 2 3 4 5 6 7

1610569

432

2

43

1/10/2018 9

Example: After deletion

1. insert: 16, 32, 4, 69, 105, 43, 2

2. deleteMin

4 32 16 69 105 43

0 1 2 3 4 5 6 7

10569

1632

4

43

1/10/2018 10

Other operations

• decreaseKey: given pointer to object in priority queue (e.g., its

array index), lower its priority value by p

– Change priority and percolate up

• increaseKey: given pointer to object in priority queue (e.g., its

array index), raise its priority value by p

– Change priority and percolate down

• remove: given pointer to object in priority queue (e.g., its array

index), remove it from the queue

– decreaseKey with p = , then deleteMin

Running time for all these operations?

1/10/2018 11

Evaluating the Array Implementation…
Advantages:

Minimal amount of wasted space:

– Only index 0 and any unused space on right in the array

– No "holes" due to complete tree property

– No wasted space representing tree edges

Fast lookups:

– Benefit of array lookup speed

– Multiplying and dividing by 2 is extremely fast (can be done
through bit shifting (see CSE 351)

– Last used position is easily found by using the PQueue's size
for the index

Disdvantages:

– What if the array gets too full (or wastes space by being too
empty)? Array will have to be resized.

Advantages outweigh Disadvantages: This is how it is done!

1/10/2018 12

So why O(1) average-case insert?

• Yes, insert's worst case is O(log n)

• The trick is that it all depends on the order the
items are inserted (What is the worst case order?)

• Experimental studies of randomly ordered inputs
shows the following:
– Average 2.607 comparisons per insert

(# of percolation passes)

– An element usually moves up 1.607 levels

• deleteMin is average O(log n)
– Moving a leaf to the root usually requires re-percolating

that value back to the bottom

1/10/2018 13

Aside: Insert run-time: Take 2

• Insert: Place in next spot, percUp

• How high do we expect it to go?

• Aside: Complete Binary Tree

– Each full row has 2x nodes of parent row

– 1+2+4+8+…+2k= 2k+1-1

– Bottom level has ~1/2 of all nodes

– Second to bottom has ~1/4 of all nodes

• PercUp Intuition:

– Move up if value is less than parent

– Inserting a random value, likely to have value not near highest, nor
lowest; somewhere in middle

– Given a random distribution of values in the heap, bottom row should
have the upper half of values, 2nd from bottom row, next 1/4

– Expect to only raise a level or 2, even if h is large

• Worst case: still O(logn)

• Expected case: O(1)

• Of course, there’s no guarantee; it may percUp to the root

996040

8020

10

700 50

85

1/10/2018 14

Building a Heap

Suppose you have n items you want to put in a new priority queue

• A sequence of n insert operations works

• Runtime?

Can we do better?

• If we only have access to insert and deleteMin operations,

then NO.

• There is a faster way - O(n), but that requires the ADT to have a
specialized buildHeap operation

Important issue in ADT design: how many specialized operations?

–Tradeoff: Convenience, Efficiency, Simplicity

1/10/2018 15

Floyd’s buildHeap Method

Recall our general strategy for working with the heap:

– Preserve structure property

– Break and restore heap ordering property

Floyd’s buildHeap:

1. Create a complete tree by putting the n items in array indices

1, . . . n

2. Treat the array as a heap and fix the heap-order property

– Exactly how we do this is where we gain efficiency

1/10/2018 16

Thinking about buildHeap

• Say we start with this array:

[12,5,11,3,10,2,9,4,8,1,7,6]

• To “fix” the ordering can we use:

– percolateUp?

– percoalteDown?

1/10/2018

6718

92103

115

12

4

17

Floyd’s buildHeap Method

Bottom-up:

• Leaves are already in heap order

• Work up toward the root one level at a time

1/10/2018

void buildHeap() {
for(i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}

18

buildHeap Example

• Say we start with this array:

[12,5,11,3,10,2,9,4,8,1,7,6]

• In tree form for readability

– Red for node not less than

descendants

• heap-order problem

– Notice no leaves are red

– Check/fix each non-leaf

bottom-up (6 steps here)

1/10/2018

6718

92103

115

12

4

19

buildHeap Example

1/10/2018

6718

92103

115

12

4 6718

92103

115

12

4

Step 1

• Happens to already be less than child

20

buildHeap Example

1/10/2018

6718

92103

115

12

4

Step 2

• Percolate down (notice that moves 1 up)

67108

9213

115

12

4

21

buildHeap Example

1/10/2018

Step 3

• Another nothing-to-do step

67108

9213

115

12

4 67108

9213

115

12

4

22

buildHeap Example

1/10/2018

Step 4

• Percolate down as necessary (steps 4a and 4b)

117108

9613

25

12

467108

9213

115

12

4

23

buildHeap Example

1/10/2018

Step 5

117108

9653

21

12

4117108

9613

25

12

4

24

buildHeap Example

1/10/2018

Step 6

117108

9654

23

1

12117108

9653

21

12

4

25

But is it right?

• “Seems to work”

– Let’s prove it restores the heap property (correctness)

– Then let’s prove its running time (efficiency)

1/10/2018

void buildHeap() {

for(i = size/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i,val);

arr[hole] = val;

}

}

26

Correctness

Loop Invariant: For all j>i, arr[j] is less than its children

• True initially: If j > size/2, then j is a leaf

– Otherwise its left child would be at position > size

• True after one more iteration: loop body and percolateDown

make arr[i] less than children without breaking the property

for any descendants

So after the loop finishes, all nodes are less than their children

1/10/2018

void buildHeap() {

for(i = size/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i,val);

arr[hole] = val;

}

}

27

1/10/2018 28

40 20 80 30 61 5 9 700 50 60

0 1 2 3 4 5 6 7 8 9 10 11 12 13

void buildHeap() {

for(i = size/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i,val);

arr[hole] = val;

}

}

9
61

30

8020

40

700 50

5

60

Loop Invariant:
For all j>i, arr[j] is less than its children

• True initially:
If j > size/2, then j is a leaf

• True after one more iteration:
loop body and percolateDown

make arr[i] less than children

without breaking the property

for any descendants

So after the loop finishes,

all nodes are less than their children

Efficiency

Easy argument: buildHeap is O(n log n) where n is size

• size/2 loop iterations

• Each iteration does one percolateDown, each is O(log n)

This is correct, but there is a more precise (“tighter”) analysis of

the algorithm…

1/10/2018

void buildHeap() {

for(i = size/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i,val);

arr[hole] = val;

}

}

29

Efficiency

Better argument: buildHeap is O(n) where n is size

• size/2 total loop iterations: O(n)

• 1/2 the loop iterations percolate at most 1 step

• 1/4 the loop iterations percolate at most 2 steps

• 1/8 the loop iterations percolate at most 3 steps… etc.

• ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + …) = 2 (page 4 of Weiss)

– So at most 2(size/2) total percolate steps: O(n)

– Also see Weiss 6.3.4, sum of heights of nodes in a perfect tree

1/10/2018

void buildHeap() {

for(i = size/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i,val);

arr[hole] = val;

}

}

30

Lessons from buildHeap

• Without buildHeap, our ADT already let clients implement their

own in (n log n) worst case

– Worst case is inserting lower priority values later

• By providing a specialized operation internally (with access to the

data structure), we can do O(n) worst case

– Intuition: Most data is near a leaf, so better to percolate down

• Can analyze this algorithm for:

– Correctness: Non-trivial inductive proof using loop invariant

– Efficiency:

• First analysis easily proved it was O(n log n)

• A “tighter” analysis shows same algorithm is O(n)

1/10/2018 31

What we’re skipping (see text if curious)

• d-heaps: have d children instead of 2 (Weiss 6.5)

– Makes heaps shallower, useful for heaps too big for memory

– How does this affect the asymptotic run-time (for small d’s)?

• Leftist heaps, skew heaps, binomial queues (Weiss 6.6-6.8)

– Different data structures for priority queues that support a
logarithmic time merge operation (impossible with binary

heaps)

– merge: given two priority queues, make one priority queue

– Insert & deleteMin defined in terms of merge

Aside: How might you merge binary heaps:

• If one heap is much smaller than the other?

• If both are about the same size?

1/10/2018 32

