Today – Algorithm Analysis

• What do we care about?
• How to compare two algorithms
• Analyzing Code
• Asymptotic Analysis
• Big-Oh Definition
What do we care about?

- Correctness:
 - Does the algorithm do what is intended.

- Performance:
 - Speed time complexity
 - Memory space complexity

- Why analyze?
 - To make good design decisions
 - Enable you to look at an algorithm (or code) and identify the bottlenecks, etc.
Q: How should we compare two algorithms?
A: How should we compare two algorithms?

- Uh, why NOT just run the program and time it??
 - Too much variability, not reliable or portable:
 - Hardware: processor(s), memory, etc.
 - OS, Java version, libraries, drivers
 - Other programs running
 - Implementation dependent
 - Choice of input
 - Testing (inexhaustive) may miss worst-case input
 - Timing does not explain relative timing among inputs (what happens when \(n \) doubles in size)

- Often want to evaluate an algorithm, not an implementation
 - Even before creating the implementation (“coding it up”)

1/05/2018
Comparing algorithms

When is one *algorithm* (not *implementation*) better than another?

- Various possible answers (clarity, security, ...)
- But a big one is *performance*: for sufficiently large inputs, runs in less time (our focus) or less space

Large inputs (n) because probably any algorithm is “plenty good” for small inputs (if n is 10, probably anything is fast enough)

Answer will be *independent* of CPU speed, programming language, coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up and timing it on some test cases”

- Can do analysis before coding!
Today – Algorithm Analysis

- What do we care about?
- How to compare two algorithms
- Analyzing Code
- Asymptotic Analysis
- Big-Oh Definition
Analyzing code ("worst case")

Basic operations take “some amount of” constant time
 – Arithmetic (fixed-width)
 – Assignment
 – Access one Java field or array index
 – Etc.
(This is an approximation of reality: a very useful “lie”.)

Consecutive statements
Sum of time of each statement

Conditionals
Time of condition plus time of slower branch

Loops
Num iterations * time for loop body

Function Calls
Time of function’s body

Recursion
Solve recurrence equation
Complexity cases

We’ll start by focusing on two cases:

- **Worst-case complexity**: max # steps algorithm takes on “most challenging” input of size N
- **Best-case complexity**: min # steps algorithm takes on “easiest” input of size N
Example

Find an integer in a sorted array

// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k){
 ???
}

Linear search

Find an integer in a sorted array

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k){
    for(int i=0; i < arr.length; ++i)
        if(arr[i] == k)
            return true;
    return false;
}
```

Best case:

Worst case:
Linear search

Find an integer in a *sorted* array

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k){
    for(int i=0; i < arr.length; ++i)
        if(arr[i] == k)
            return true;
    return false;
}
```

Best case: 6 “ish” steps = $O(1)$
Worst case: 5 “ish” * (arr.length) = $O(arr.length)$
Summation Example

```c
for (i = 0; i < n; i++) {
    sum++;
}
```
Remember a faster search algorithm?
Ignoring constant factors

- So binary search is $O(\log n)$ and linear is $O(n)$
 - But which will actually be faster?
 - Depending on constant factors and size of n, in a particular situation, linear search could be faster…

- Could depend on constant factors
 - How *many* assignments, additions, etc. for each n
 - And could depend on size of n

- **But** there exists some n_0 such that for all $n > n_0$ binary search wins

- Let’s play with a couple plots to get some intuition…
Example

• Let’s try to “help” linear search
 – Run it on a computer 100x as fast (say 2017 model vs. 1990)
 – Use a new compiler/language that is 3x as fast
 – Be a clever programmer to eliminate half the work
 – So doing each iteration is 600x as fast as in binary search
• Note: 600x still helpful for problems without logarithmic algorithms!
Logarithms and Exponents

- Since so much is binary in CS, \(\log \) almost always means \(\log_2 \)
- Definition: \(\log_2 x = y \) if \(x = 2^y \)
- So, \(\log_2 1,000,000 = \) “a little under 20”
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file for plot data – play with it!
Aside: Log base doesn’t matter (much)

“Any base B log is equivalent to base 2 log within a constant factor”
- And we are about to stop worrying about constant factors!
- In particular, $\log_2 x = 3.22 \log_{10} x$
- In general, we can convert log bases via a constant multiplier
- Say, to convert from base B to base A:
 $$\log_B x = \left(\log_A x \right) / \left(\log_A B \right)$$
Review: Properties of logarithms

• \(\log(A*B) = \log A + \log B \)

 – So \(\log(N^k) = k \log N \)

• \(\log(A/B) = \log A - \log B \)

• \(x = \log_2 2^x \)

• \(\log(\log x) \) is written \(\log \log x \)

 – Grows as slowly as \(2^{2^y} \) grows fast

 – Ex:
 \[
 \log_2 \log_2 4\text{billion} \sim \log_2 \log_2 2^{32} = \log_2 32 = 5
 \]

• \((\log x)(\log x) \) is written \(\log^2 x \)

 – It is greater than \(\log x \) for all \(x > 2 \)
Logarithms and Exponents

![Graph showing growth of functions](image)

- 2^n
- n^2
- n
- $\log n$

1/05/2018
Logarithms and Exponents
Logarithms and Exponents

The graph shows the comparison of different functions: 2^n, n^2, n, and $\log n$. The x-axis represents the values of n, and the y-axis represents the values of the functions. The graph illustrates the exponential growth of 2^n compared to polynomial growth of n^2, linear growth of n, and the logarithmic growth of $\log n$.

1/05/2018
Today – Algorithm Analysis

• What do we care about?
• How to compare two algorithms
• Analyzing Code
• Asymptotic Analysis
• Big-Oh Definition
Asymptotic notation

About to show formal definition, which amounts to saying:
1. Eliminate low-order terms
2. Eliminate coefficients

Examples:
- $4n + 5$
- $0.5n \log n + 2n + 7$
- $n^3 + 2^n + 3n$
- $n \log (10n^2)$
Examples

True or false?

1. 4+3n is O(n)
2. n+2logn is O(logn)
3. logn+2 is O(1)
4. n^{50} is O(1.1^n)

Notes:
• Do NOT ignore constants that are not multipliers:
 – n^3 is O(n^2) : FALSE
 – 3^n is O(2^n) : FALSE
• When in doubt, refer to the definition
Examples (Answers)

True or false?

1. $4+3n$ is $O(n)$ True
2. $n+2\log n$ is $O(\log n)$ False
3. $\log n+2$ is $O(1)$ False
4. n^{50} is $O(1.1^n)$ True

Notes:
• Do NOT ignore constants that are not multipliers:
 – n^3 is $O(n^2)$: FALSE
 – 3^n is $O(2^n)$: FALSE
• When in doubt, refer to the definition
Big-Oh relates functions

We use O on a function $f(n)$ (for example n^2) to mean the set of functions with asymptotic behavior less than or equal to $f(n)$.

So $(3n^2+17)$ is in $O(n^2)$

- $3n^2+17$ and n^2 have the same asymptotic behavior.

Confusingly, we also say/write:

- $(3n^2+17)$ is $O(n^2)$
- $(3n^2+17) = O(n^2)$

But we would never say $O(n^2) = (3n^2+17)$
Formally Big-Oh

Definition: \(g(n) \) is in \(O(f(n)) \) iff there exist positive constants \(c \) and \(n_0 \) such that
\[
g(n) \leq c f(n) \quad \text{for all } n \geq n_0
\]

To show \(g(n) \) is in \(O(f(n)) \), pick a \(c \) large enough to “cover the constant factors” and \(n_0 \) large enough to “cover the lower-order terms”. Note: \(n_0 \geq 1 \) (and a natural number) and \(c > 0 \)

Example: Let \(g(n) = 3n + 4 \) and \(f(n) = n \)

\(c = 5 \) and \(n_0 = 5 \) is one possibility

This is “less than or equal to”

- So \(3n + 4 \) is also \(O(n^5) \) and \(O(2^n) \) etc.
An Example

To show $g(n)$ is in $O(f(n))$, pick a c large enough to “cover the constant factors” and n_0 large enough to “cover the lower-order terms”

- Example: Let $g(n) = 4n^2 + 3n + 4$ and $f(n) = n^3$
Using the definition of Big-Oh (Example 2)

For \(g(n) = 4n \) & \(f(n) = n^2 \), show \(g(n) \) is in \(O(f(n)) \)

– A valid proof is to find valid \(c \) & \(n_0 \)
– When \(n=4 \), \(g(n) = 16 \) & \(f(n) = 16 \); this is the crossing over point
– So we can choose \(n_0 = 4 \), and \(c = 1 \)

– Note: There are many possible choices:
 ex: \(n_0 = 78 \), and \(c = 42 \) works fine

The Definition: \(g(n) \) is in \(O(f(n)) \) iff there exist positive constants \(c \) and \(n_0 \) such that
\[
g(n) \leq c \cdot f(n) \text{ for all } n \geq n_0.
\]
Using the definition of Big-Oh (Example 3)

For \(g(n) = n^4 \) & \(f(n) = 2^n \), show \(g(n) \) is in \(\text{O}(f(n)) \)

– A valid proof is to find valid \(c \) & \(n_0 \)
– One possible answer: \(n_0 = 20 \), and \(c = 1 \)

The Definition: \(g(n) \) is in \(\text{O}(f(n)) \)
iff there exist positive constants \(c \) and \(n_0 \) such that
\[
g(n) \leq c f(n) \text{ for all } n \geq n_0.
\]
What’s with the c?

- To capture this notion of similar asymptotic behavior, we allow a constant multiplier (called c)
- Consider:
 \[g(n) = 7n + 5 \]
 \[f(n) = n \]
- These have the same asymptotic behavior (linear), so \(g(n) \) is in \(O(f(n)) \) even though \(g(n) \) is always larger
- There is no positive \(n_0 \) such that \(g(n) \leq f(n) \) for all \(n \geq n_0 \)
- The ‘c’ in the definition allows for that:
 \[g(n) \leq c \times f(n) \quad \text{for all } n \geq n_0 \]
- To show \(g(n) \) is in \(O(f(n)) \), have \(c = 12 \), \(n_0 = 1 \)
What you can drop

- Eliminate coefficients because we don’t have units anyway
 - $3n^2$ versus $5n^2$ doesn’t mean anything when we have not specified the cost of constant-time operations (can re-scale)

- Eliminate low-order terms because they have vanishingly small impact as n grows

- Do NOT ignore constants that are not multipliers
 - n^3 is not $O(n^2)$
 - 3^n is not $O(2^n)$

(This all follows from the formal definition)
Big Oh: Common Categories

From fastest to slowest

$O(1)$ constant (same as $O(k)$ for constant k)

$O(\log n)$ logarithmic

$O(n)$ linear

$O(n \log n)$ “$n \log n$”

$O(n^2)$ quadratic

$O(n^3)$ cubic

$O(n^k)$ polynomial (where k is any constant > 1)

$O(k^n)$ exponential (where k is any constant > 1)

Usage note: “exponential” does not mean “grows really fast”, it means “grows at rate proportional to k^n for some $k>1$”
More Asymptotic Notation

- **Upper bound**: $O(\ f(n)\)$ is the set of all functions asymptotically less than or equal to $f(n)$
 - $g(n)$ is in $O(\ f(n)\)$ if there exist constants c and n_0 such that
 $g(n) \leq c \ f(n)$ for all $n \geq n_0$

- **Lower bound**: $\Omega(\ f(n)\)$ is the set of all functions asymptotically greater than or equal to $f(n)$
 - $g(n)$ is in $\Omega(\ f(n)\)$ if there exist constants c and n_0 such that
 $g(n) \geq c \ f(n)$ for all $n \geq n_0$

- **Tight bound**: $\Theta(\ f(n)\)$ is the set of all functions asymptotically equal to $f(n)$
 - Intersection of $O(\ f(n)\)$ and $\Omega(\ f(n)\)$ (can use different c values)
Regarding use of terms

A common error is to say $O(f(n))$ when you mean $\Theta(f(n))$

- People often say $O()$ to mean a tight bound
- Say we have $f(n)=n$; we could say $f(n)$ is in $O(n)$, which is true, but only conveys the upper-bound
- Since $f(n)=n$ is also $O(n^5)$, it’s tempting to say “this algorithm is exactly $O(n)$”
- Somewhat incomplete; instead say it is $\Theta(n)$
- That means that it is not, for example $O(\log n)$

Less common notation:
- “little-oh”: like “big-Oh” but strictly less than
 - Example: sum is $o(n^2)$ but not $o(n)$
- “little-omega”: like “big-Omega” but strictly greater than
 - Example: sum is $\omega(\log n)$ but not $\omega(n)$
What we are analyzing

• The most common thing to do is give an O or θ bound to the worst-case running time of an algorithm

• Example: True statements about binary-search algorithm
 – Common: $\theta(\log n)$ running-time in the worst-case
 – Less common: $\theta(1)$ in the best-case (item is in the middle)
 – Less common: Algorithm is $\Omega(\log \log n)$ in the worst-case (it is not really, really, really fast asymptotically)
 – Less common (but very good to know): the find-in-sorted-array problem is $\Omega(\log n)$ in the worst-case
 • No algorithm can do better (without parallelism)
 • A problem cannot be $O(f(n))$ since you can always find a slower algorithm, but can mean there exists an algorithm
Other things to analyze

• Space instead of time
 – Remember we can often use space to gain time

• Average case
 – Sometimes only if you assume something about the distribution of inputs
 • See CSE312 and STAT391
 – Sometimes uses randomization in the algorithm
 • Will see an example with sorting; also see CSE312
 – Sometimes an *amortized guarantee*
 • Will discuss in a later lecture
Summary

Analysis can be about:

- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
 - Or power or dollars or ...
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper or tight)
Big-Oh Caveats

• Asymptotic complexity (Big-Oh) focuses on behavior for large n and is independent of any computer / coding trick
 – But you can “abuse” it to be misled about trade-offs
 – Example: $n^{1/10}$ vs. $\log n$
 • Asymptotically $n^{1/10}$ grows more quickly
 • But the “cross-over” point is around 5×10^{17}
 • So if you have input size less than 2^{58}, prefer $n^{1/10}$
• Comparing $O()$ for small n values can be misleading
 – Quicksort: $O(n \log n)$ (expected)
 – Insertion Sort: $O(n^2)$ (expected)
 – Yet in reality Insertion Sort is faster for small n’s
 – We’ll learn about these sorts later
Addendum: Timing vs. Big-Oh?

• At the core of CS is a backbone of theory & mathematics
 – Examine the algorithm itself, mathematically, not the implementation
 – Reason about performance as a function of n
 – Be able to mathematically prove things about performance
• Yet, timing has its place
 – In the real world, we do want to know whether implementation A runs faster than implementation B on data set C
 – Ex: Benchmarking graphics cards
• Evaluating an algorithm? Use asymptotic analysis
• Evaluating an implementation of hardware/software? Timing can be useful
Review: Properties of logarithms

• \(\log(A \times B) = \log A + \log B \)
 - So \(\log(N^k) = k \log N \)

• \(\log(A/B) = \log A - \log B \)

• \(x = \log_2 2^x \)

• \(\log(\log x) \) is written \(\log \log x \)
 - Grows as slowly as \(2^{2^y} \) grows fast
 - Ex:
 \[
 \log_2 \log_2 4\text{billion} \sim \log_2 \log_2 2^{32} = \log_2 32 = 5
 \]

• \((\log x)(\log x) \) is written \(\log^2 x \)
 - It is greater than \(\log x \) for all \(x > 2 \)