
CSE 332: Data Structures &

Parallelism

Ruth Anderson

Winter 2018

Lecture 1

Welcome!

We have 10 weeks to learn fundamental

data structures and algorithms for

organizing and processing information

› “Classic” data structures / algorithms and

how to analyze rigorously their efficiency

and when to use them

› Queues, dictionaries, graphs, sorting, etc.

› Parallelism and concurrency (!)

1/03/18 2

3

Today’s Outline

• Introductions

• Administrative Info

• What is this course about?

• Review: Queues and stacks

1/03/18

4

CSE 332 Course Staff!!

Instructor:

Ruth Anderson

Teaching Assistants:

• Daniel Allen

• Natalie Andreeva

• Ollin Boer Bohan

• Irving Chen

• Viktor Farkas

• Kathryn Howland

• Yun Jung Kim

• Michal Piszczek

• Nicholas Porter

• Jefferson Van Wagenen

• Lucas Wotton

• Casey Xing

1/03/18

Me (Ruth Anderson)

• Grad Student at UW in Programming Languages,
Compilers, Parallel Computing

• Taught Computer Science at the University of
Virginia for 5 years

• Grad Student at UW: PhD in Educational
Technology, Pen Computing

• Current Research: Computing and the Developing
World, Computer Science Education

• Recently Taught: data structures, architecture,
compilers, programming languages, 142 & 143, data
programming in Python, Unix Tools,
Designing Technology for
Resource-Constrained Environments

1/03/18

6

Today’s Outline

• Introductions

• Administrative Info

• What is this course about?

• Review: Queues and stacks

1/03/18

7

Course Information

• Instructor: Ruth Anderson, CSE 460

Office Hours: see course web page, and by

appointment, (rea@cs.washington.edu)

• Text: Data Structures & Algorithm Analysis in

Java, (Mark Allen Weiss), 3rd edition, 2012
(2nd edition also o.k.)

• Course Web page:
http://www.cs.washington.edu/332

1/03/18

Communication

• Course email list: cse332a_wi18@uw

cse332b_wi18@uw

› You are already subscribed

› You must get and read announcements sent there

• Piazza Discussion board

› Your first stop for questions about course content &

assignments

• Anonymous feedback link

› For good and bad: if you don’t tell me, I won’t know!

1/03/18 8

Course Meetings

• Lecture

› Materials posted (sometimes afterwards), but take notes

› Ask questions, focus on key ideas (rarely coding details)

• Section

› Practice problems!

› Answer Java/project/homework questions, etc.

› Occasionally may introduce new material

› An important part of the course (not optional)

• Office hours

› Use them: please visit us!

1/03/18 9

Course Materials
• Lecture and section materials will be posted

› But they are visual aids, not always a complete description!

› If you have to miss, find out what you missed

• Textbook: Weiss 3rd Edition in Java

› Good read, but only responsible for lecture/section/hw topics

› 3rd edition improves on 2nd, but we’ll also support the 2nd

• Parallelism / concurrency units in separate free resources

designed for 332

1/03/18 10

11

Course Work

• ~20 Weekly individual homework exercises (25%)

• 3 programming projects (with phases) (30%)

› Use Java 8 and Eclipse, Gitlab

› Done in partners, o.k. if partner is in other lecture section

• Midterm - (20%)

• Final Exam - (25%)

• Midterm exam: Thursday February 1, 2018 from 5-6:30pm

• Final exam: Tuesday March 13, 2018 from 12:30-2:20pm

• Locations TBA. Contact the instructor immediately if you have a

conflict with either of these times.

1/03/18

Collaboration & Academic Integrity

• Read the course policy very carefully

› Explains quite clearly how you can and cannot get/provide help

on homework and projects

› Looking at solutions from previous quarters is cheating

› Gilligan’s Island rule applies.

• Always proactively explain any unconventional action on

your part. When it happens, (not when asked)

1/03/18 12

13

Homework for Today!!

0) Project #1: (released later today) Fill out
partner survey by 6pm TODAY

1) Review Java & install Eclipse

2) Exercise #1 – Due FRIDAY at 11:59pm

3) Preliminary Survey: fill out by Thurs
evening

4) Reading in Weiss (see handout)

1/03/18

14

Reading

• Reading in Data Structures and Algorithm

Analysis in Java, 3rd Ed., 2012 by Weiss

• For this week:

› (Topic for Project #1) Weiss 3.1-3.7 –Lists,

Stacks, & Queues

› (Fri) Weiss 2.1-2.4 –Algorithm Analysis

› (Useful) Weiss 1.1-1.6 –Mathematics and Java

(Not covered in lecture – READ THIS)
1/03/18

15

Today’s Outline

• Introductions

• Administrative Info

• What is this course about?

• Review: Queues and stacks

1/03/18

Data Structures + Parallemism

• About 70% of the course is a “classic data-structures

course”

› Timeless, essential stuff

› Core data structures and algorithms that underlie most software

› How to analyze algorithms

• Plus a serious first treatment of programming with

multiple threads

› For parallelism: Use multiple processors to finish sooner

› For concurrency: Correct access to shared resources

› Will make many connections to the classic material

1/03/18 16

What 332 is about

• Deeply understand the basic structures used in all

software

› Understand the data structures and their trade-offs

› Rigorously analyze the algorithms that use them (math!)

› Learn how to pick “the right thing for the job”

• Experience the purposes and headaches of

multithreading

• Practice design, analysis, and implementation

› The elegant interplay of “theory” and “engineering” at the

core of computer science

1/03/18 17

18

Goals

• You will understand:

› what the tools are for storing and

processing common data types

› which tools are appropriate for which need

• So that you will be able to:

› make good design choices as a developer,

project manager, or system customer

› justify and communicate your design

decisions

1/03/18

One view on this course

• This is the class where you begin to

think like a computer scientist

› You stop thinking in Java code

› You start thinking that this is a hashtable

problem, a stack problem, etc.

1/03/18 19

20

Data Structures?

“Clever” ways to organize information in

order to enable efficient computation

over that information.

1/03/18

21

Trade-offs

A data structure strives to provide many useful, efficient

operations

But there are unavoidable trade-offs:

› Time vs. space

› One operation more efficient if another less efficient

› Generality vs. simplicity vs. performance

That is why there are many data structures and

educated CSEers internalize their main trade-offs and

techniques

› And recognize logarithmic < linear < quadratic < exponential

1/03/18

22

Getting Serious: Terminology

• Abstract Data Type (ADT)

› Mathematical description of a “thing” with set of

operations on that “thing”

• Algorithm

› A high level, language-independent description of

a step-by-step process

• Data structure

› A specific organization of data and family of

algorithms for implementing an ADT

• Implementation of a data structure

› A specific implementation in a specific language
1/03/18

23

The Stack ADT

• Stack Operations:

push

pop

top/peek

is_empty

A

B

C

D

E

F

E D C B A

F

1/03/18

24

Terminology Example: Stacks

• The Stack ADT supports operations:

› push: adds an item

› pop: raises an error if isEmpty, else returns most-recently

pushed item not yet returned by a pop

› isEmpty: initially true, later true if there have been same

number of pops as pushes

› … (Often some more operations)

• A Stack data structure could use a linked-list or an array

or something else, and associated algorithms for the

operations

• One implementation is in the library java.util.Stack

1/03/18

25

Why useful

The Stack ADT is a useful abstraction because:

• It arises all the time in programming (see Weiss for

more)

› Recursive function calls

› Balancing symbols (parentheses)

› Evaluating postfix notation: 3 4 + 5 *

› Clever: Infix ((3+4) * 5) to postfix conversion (see Weiss)

• We can code up a reusable library

• We can communicate in high-level terms

› “Use a stack and push numbers, popping for operators…”

› Rather than, “create a linked list and add a node when…”

1/03/18

26

Today’s Outline

• Introductions

• Administrative Info

• What is this course about?

• Review: Queues and stacks

1/03/18

27

The Queue ADT

Queue Operations:

enqueue

dequeue

is_empty

F E D C B
enqueue dequeue

G A

1/03/18

28

Circular Array Queue Data Structure

// Basic idea only!

enqueue(x) {

Q[back] = x;

back = (back + 1) % size

}

// Basic idea only!

dequeue() {

x = Q[front];

front = (front + 1) % size;

return x;

}

b c d e f

Q: 0 size - 1

front back

• What if queue is empty?

› Enqueue?

› Dequeue?

• What if array is full?

• How to test for empty?

• What is the complexity of

the operations?

1/03/18

29

Linked List Queue Data Structure

b c d e f

front back

// Basic idea only!

enqueue(x) {

back.next = new Node(x);

back = back.next;

}

// Basic idea only!

dequeue() {

x = front.item;

front = front.next;

return x;

}

• What if queue is empty?

› Enqueue?

› Dequeue?

• Can list be full?

• How to test for empty?

• What is the complexity of

the operations?

1/03/18

30

Circular Array vs. Linked List

1/03/18

31

Circular Array vs. Linked List

Array:

– May waste unneeded space

or run out of space

– Space per element excellent

– Operations very simple / fast

Not in Queue ADT, but also:

– Constant-time access to kth

element

– For operation insertAtPosition,

must shift all later elements

List:

– Always just enough space

– But more space per element

– Operations very simple / fast

Not in Queue ADT, but also:

– No constant-time access to kth

element

– For operation insertAtPosition

must traverse all earlier elements

1/03/18

32

Homework for Today!!

0) Project #1: (released later today) Fill out
partner survey by 6pm TODAY

1) Review Java & install Eclipse

2) Exercise #1 – Due FRIDAY at 11:59pm

3) Preliminary Survey: fill out by Thurs
evening

4) Reading in Weiss (see handout)

1/03/18

