CSE 332: Data Structures & Parallelism

Lecture 23: Disjoint Sets

Ruth Anderson
Autumn 2017



Aside: Union-Find aka Disjoint Set ADT

 Union(x,y) — take the union of two sets named x and y
— Given sets: {3,5,7}, {4,2,8}, {9}, {1,6}
— Union(5,1)
Result: {3,5,7,1,6}, {4,2,8}, {9},
To perform the union operation, we replace sets x andy by (x v y)

* Find(x) — return the name of the set containing Xx.
— Given sets: {3,5,7,1,6}, {4,2,8}, {9},
— Find(1) returns 5
— Find(4) returns 8

* We can do Union in constant time.
 We can get Find to be amortized constant time

(worst case O(log n) for an individual Find operation).
12/04/2017 2



Implementing the DS ADT

* N elelments,f o - can there be
. < - -
Total Cost of: m finds, < n-1 unions more unions?

« Target complexity: O(m+n)
l.e. O(1) amortized

« O(1) worst-case for find as well as union would be great, but...

Known result: both find and union cannot be done in worst-case
O(1) time

12/04/2017



Data Structure for the DS ADT

* Observation: trees let us find many elements given one root...

* Idea: if we reverse the pointers (make them point up from child
to parent), we can find a single root from many elements...

 |dea: Use one tree for each equivalence class. The name of
the class is the tree root.

12/04/2017



Up-Tree for Disjoint Union/Find

Initialstate:@ @ @ @ @ @ @

After several @ @
Unions: \ R
@ ® @

Roots are the names of each set. @D/

12/04/2017



Find Operation

Find(x) - follow x to the root and return the root
Find(6) =7

12/04/2017



Union Operation

Union(x,y) - assuming x and y are roots, point y to x.

(@ Union(1,7)
\ /

©) /@) D

(6

12/04/2017 7




Simple Implementation

« Array of indices

Up[x] = 0 means
12 3 45 67 X IS aroot.

12/04/2017 8



Implementation

int Find(int x) {

while (up[x] '= 0)

x = up[x];

return x;

{

void Union(int x, int y) {

uply] = x;

runtime for Union():

runtime for Find():

runtime for m Finds and n-1 Unions:

12/04/2017




A Bad Case Union(x,y) — “point y to x”

@

@ ©
Union(2,1)
@ ©

Union(3,2)

@
@
@ :
@5 /@ Uni.on(n,n-l)

@ Find(1) n steps!!

12/04/2017 "



Now this doesn’t look good &

Can we do better? Yes!

1. Improve union so that find only takes ©(log n)
* Union-by-size
 Reduces complexity to ©(m log n + n)

2. Improve find so that it becomes even better!
« Path compression
 Reduces complexity to almost ©(m + n)

12/04/2017 11



Weighted Union/Union by Size

* Weighted Union

— Always point the smaller (total # of nodes) tree to the root of
the larger tree

W-Union(1,7)
LI
@ /@ @
(&




Example Again

© @ ® - O
W-Union(2,1)

@ ® " W
é' W-Union(3,2)

"

g _
W-Union(n,2)
6@% Find(1) constanttime



Analysis of Weighted Union

With weighted union an up-tree of height h has
weight at least 2",

* Proof by induction
— Basis: h = 0. The up-tree has one node, 2° =1

— Inductive step: Assume true for all h’ < h.
T W(T,) > W(T,) > 21

Minimum weight ! Weigr/:ted Ind}Jction
up-tree of height h hf union hypothesis
formed by W(T) > 2h-1+ 2h-1 = 2h

weighted unions




Analysis of Weighted Union (cont)

Let T be an up-tree of weight n formed by weighted union. Let h be
its height.

n>2h
log, n>h

« Find(x) in tree T takes O(log n) time.
— Can we do better?



Worst Case for Weighted Union

n/2 Weighted Unions

38888888

n/4 Weighted Unions

Sy S 9% 9%



Example of Worst Cast (cont’)

After n/2 + n/4 + ...+ 1 Weighted Unions:

S
i@% 02\05% JOQ:”

™ Find
If there are n = 2k nodes then the longest
path from leaf to root has length k.



Array Implementation

2@{ 1 @
@
1 2 345 6
up [-111-1]7]7|5]-
weight| 2 1




Weighted Union

W-Union(i,Jj : index) {
//1i and j are roots
wl := weight[1i];
wj := weight[]j];
if wi < wj then

up[i] := 3J;

weight[]j]
else

up[j] :=1;

weight[i] := wi +wj;

wi + wj; new runtime for Union():

} new runtime for Find():
runtime for m finds and n-1 unions =

19



Nifty Storage Trick

« Use the same array representation as before

- Instead of storing =1 for the root,
simply store —s1ze

|[Read section 8.4]



How about Union-by-height?

« Can still guarantee O(log n) worst case depth

Left as an exercise!

* Problem: Union-by-height doesn’t combine
very well with the new find optimization
technique we’ll see next



Now this doesn’t look good &

Can we do better? Yes!

1. DONE: Improve union so that find only takes
©(log n)
* Union-by-size
 Reduces complexity to ©(m log n + n)

2. NOW: Improve find so that it becomes even
better!

 Path compression
 Reduces complexity to almost ©(m + n)

12/04/2017 22



Path Compression

* On a Find operation point all the nodes on the
search path directly to the root.

S

(4) pc-Find(3)

0

W
B

@\@

@/'

i



Path Compression

* On a Find operation point all the nodes on the
search path directly to the root.

@ (7
\@D R PC-Find(3) \@3 3 ® é) (4)

@/ & &




Draw the result of Find(e):




Self-Adjustment Works

S N
1\/1@%\

; E
(‘ PC-Find(x) ‘.\ "\
7%
S A <




Path Compression Find

PC-Find (i : index) {

r := 1i;
while up[r] # -1 do //£find root//
r := uplr];
if i # r then //compress path//
k := upl[i];
while k # r do
up[i] := r;
i := k;
k := uplk]

return (r)

}



Path Compression: Code

int Find(Object x) ({
// x had better be in
// the set!
int xID = hTable[x];

int i = xID;

// Get the root for
// this set
while (up[xID] !'= -1)
{

xID = up[xID];

}

// Change the parent for
// all nodes along the path
while (up[i] '= -1) {

temp = upl[i];

up[i] xID;

i = temp;

}

return xID;

(New?) runtime for Find:



Interlude: A Really Slow Function

Ackermann’s function is a really big function
A(X, y) with inverse o(X, y) which is really small

How fast does a(X, y) grow?

o(X, y) = 4 for x far larger than the number of
atoms in the universe (23%)

o. Shows up in:
— Computation Geometry (surface complexity)
— Combinatorics of sequences



A More Comprehensible Slow Function

log* X = number of times you need to compute
log to bring value down to at most 1

E.g.logr2=1
0g* 4 =log* 22 =2
0og* 16 = log* 222 =3 (log log log 16 = 1)
0g* 65536 = log* 2222 = 4 (log log log log 65536 = 1)
og* 209936 = ... =

Take this: a(m,n) grows even slower than log* n !



Complex Complexity of
Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, p union
and find operations on a set of n elements have
worst case complexity of O(p - a(p, n))

For all practical purposes this is amortized constant
time:

O(p - 4) for p operations!

* Very complex analysis



Disjoint Union / Find
with Weighted Union and PC

« Worst case time complexity for a W-Union Is
O(1) and for a PC-Find is O(log n).
* Time complexity for m > n operations on n

elements is O(m log* n) where log* nis a
very slow growing function.

— Log * n < 7 for all reasonable n. Essentially
constant time per operation!

« Using “ranked union” gives an even better
bound theoretically.



Amortized Complexity

* For disjoint union / find with weighted union and path
compression.

— average time per operation is essentially a constant.
— worst case time for a PC-Find is O(log n).

« An individual operation can be costly, but over time the average
cost per operation is not.



