Aside: Union-Find aka Disjoint Set ADT

- **Union(x,y)** – take the union of two sets named x and y
 - Given sets: {3,5,7}, {4,2,8}, {9}, {1,6}
 - **Union(5,1)**
 - Result: {3,5,7,1,6}, {4,2,8}, {9},

To perform the union operation, we replace sets x and y by \((x \cup y)\)

- **Find(x)** – return the name of the set containing x.
 - Given sets: {3,5,7,1,6}, {4,2,8}, {9},
 - **Find(1)** returns 5
 - **Find(4)** returns 8

- We can do Union in constant time.
- We can get Find to be *amortized* constant time
 (worst case \(O(\log n)\) for an individual Find operation).
Implementing the DS ADT

- \(n \) elements,
 Total Cost of: \(m \) finds, \(\leq n-1 \) unions

- Target complexity: \(O(m+n) \)
 \textit{i.e.} \(O(1) \) amortized

- \(O(1) \) worst-case for find as well as union would be great, but…
 \textit{Known result:} both find and union \textit{cannot} be done in worst-case \(O(1) \) time
Data Structure for the DS ADT

- **Observation**: trees let us find many elements given one root...

- **Idea**: if we reverse the pointers (make them point up from child to parent), we can find a single root from many elements...

- **Idea**: Use one tree for each equivalence class. The name of the class is the tree root.
Up-Tree for Disjoint Union/Find

Initial state: 1 2 3 4 5 6 7

After several Unions:

Roots are the names of each set.
Find Operation

Find(x) - follow x to the root and return the root

Find(6) = 7
Union Operation

Union(x,y) - assuming x and y are roots, point y to x.
Simple Implementation

- Array of indices

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\uparrow & & & & & & \\
0 & 1 & 0 & 7 & 7 & 5 & 0 \\
\end{array}
\]

\text{Up}[x] = 0 \text{ means } x \text{ is a root.}
Implementation

```c
int Find(int x) {
    while(up[x] != 0) {
        x = up[x];
    }
    return x;
}
```

```c
void Union(int x, int y) {
    up[y] = x;
}
```

runtime for Union():

runtime for Find():

runtime for m Finds and n-1 Unions:
A Bad Case

Union(2,1)

Union(3,2)

Union(n,n-1)

Find(1) n steps!!
Now this doesn’t look good 😞

Can we do better? Yes!

1. Improve union so that find only takes $\Theta(\log n)$
 - Union-by-size
 - Reduces complexity to $\Theta(m \log n + n)$

2. Improve find so that it becomes even better!
 - Path compression
 - Reduces complexity to almost $\Theta(m + n)$
Weighted Union/Union by Size

- Weighted Union
 - Always point the smaller (total # of nodes) tree to the root of the larger tree

![Weighted Union Diagram](image-url)
Example Again

$W - \text{Union}(2,1)$

$W - \text{Union}(3,2)$

\vdots

$W - \text{Union}(n,2)$

Find(1) constant time
Analysis of Weighted Union

With weighted union an up-tree of height h has weight at least 2^h.

- Proof by induction
 - **Basis**: $h = 0$. The up-tree has one node, $2^0 = 1$
 - **Inductive step**: Assume true for all $h' < h$.

\[
W(T_1) \geq W(T_2) \geq 2^{h-1}
\]

\[
W(T) \geq 2^{h-1} + 2^{h-1} = 2^h
\]
Analysis of Weighted Union (cont)

Let T be an up-tree of weight n formed by weighted union. Let h be its height.

\[n \geq 2^h \]
\[\log_2 n \geq h \]

- Find(x) in tree T takes \(O(\log n) \) time.
 - Can we do better?
Worst Case for Weighted Union

n/2 Weighted Unions

n/4 Weighted Unions
Example of Worst Cast (cont’)

After \(\frac{n}{2} + \frac{n}{4} + \ldots + 1 \) Weighted Unions:

If there are \(n = 2^k \) nodes then the longest path from leaf to root has length \(k \).
Array Implementation

```
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

up weight
-1 1 -1 7 7 5 -1
2 1   4
```
Weighted Union

\[W-\text{Union}(i, j : \text{index}) \{ \]
//i and j are roots
\[wi := \text{weight}[i]; \]
\[wj := \text{weight}[j]; \]
\[\text{if } wi < wj \text{ then} \]
\[\quad \text{up}[i] := j; \]
\[\quad \text{weight}[j] := wi + wj; \]
\[\text{else} \]
\[\quad \text{up}[j] := i; \]
\[\quad \text{weight}[i] := wi + wj; \]
\[\} \]

new runtime for Union():

runtime for \(m \) finds and \(n-1 \) unions =

new runtime for Find():
Nifty Storage Trick

- Use the same array representation as before

- Instead of storing \(-1\) for the root, simply store \(-\text{size}\)

[Read section 8.4]
How about Union-by-height?

- Can still guarantee $O(\log n)$ worst case depth

 Left as an exercise!

- Problem: Union-by-height doesn’t combine very well with the new find optimization technique we’ll see next
Now this doesn’t look good 😞
Can we do better? Yes!

1. **DONE**: Improve **union** so that **find** only takes \(\Theta(\log n) \)
 - Union-by-size
 - Reduces complexity to \(\Theta(m \log n + n) \)

2. **NOW**: Improve **find** so that it becomes even better!
 - Path compression
 - Reduces complexity to almost \(\Theta(m + n) \)
Path Compression

• On a Find operation point all the nodes on the search path directly to the root.
Path Compression

• On a Find operation point all the nodes on the search path directly to the root.
Draw the result of Find(e):
Self-Adjustment Works
Path Compression Find

PC-Find(i : index) {
 r := i;
 while up[r] ≠ -1 do // find root //
 r := up[r];
 if i ≠ r then // compress path //
 k := up[i];
 while k ≠ r do
 up[i] := r;
 i := k;
 k := up[k]
 return(r)
}
Path Compression: Code

```c
int Find(Object x) {
    // x had better be in
    // the set!
    int xID = hTable[x];
    int i = xID;

    // Get the root for
    // this set
    while(up[xID] != -1) {
        xID = up[xID];
    }

    // Change the parent for
    // all nodes along the path
    while(up[i] != -1) {
        temp = up[i];
        up[i] = xID;
        i = temp;
    }

    return xID;
}
```

(New?) runtime for Find:
Interlude: A Really Slow Function

Acknowledgment’s function is a really big function $A(x, y)$ with inverse $\alpha(x, y)$ which is really small.

How fast does $\alpha(x, y)$ grow?

$\alpha(x, y) = 4$ for x far larger than the number of atoms in the universe (2^{300})

α shows up in:
- Computation Geometry (surface complexity)
- Combinatorics of sequences
A More Comprehensible Slow Function

log\(^*\) \(x\) = number of times you need to compute log to bring value down to at most 1

E.g. \(\log^* 2 = 1\)

\(\log^* 4 = \log^* 2^2 = 2\)

\(\log^* 16 = \log^* 2^{2^2} = 3\) \hspace{1cm} (log log log 16 = 1)

\(\log^* 65536 = \log^* 2^{2^{2^2}} = 4\) \hspace{1cm} (log log log log 65536 = 1)

\(\log^* 2^{65536} = \ldots \ldots = 5\)

Take this: \(\alpha(m,n)\) grows even slower than \(\log^* n\) !!
Complex Complexity of Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, p union and find operations on a set of n elements have worst case complexity of $O(p \cdot \alpha(p, n))$

For *all practical purposes* this is amortized constant time:

$O(p \cdot 4)$ for p operations!

- Very complex analysis
Disjoint Union / Find
with Weighted Union and PC

• Worst case time complexity for a W-Union is \(O(1)\) and for a PC-Find is \(O(\log n)\).
• Time complexity for \(m \geq n\) operations on \(n\) elements is \(O(m \log^* n)\) where \(\log^* n\) is a very slow growing function.
 – \(\log^* n < 7\) for all reasonable \(n\). Essentially constant time per operation!
• Using “ranked union” gives an even better bound theoretically.
Amortized Complexity

- For disjoint union / find with weighted union and path compression.
 - average time per operation is essentially a constant.
 - worst case time for a PC-Find is $O(\log n)$.
- An individual operation can be costly, but over time the average cost per operation is not.