
CSE 332: Data Structures and Parallelism Winter 2018

Generics in CSE 332
In CSE 332, we will use generics, but they are not an important topic. This guide is intended to walk you through
the icky parts from a “usage” perspective. CSE 331 will cover exactly how these things work and why they are
the way they are, but CSE 332 is not a “Java” course; so, we’ll learn just enough to get by.

Creating Generic Arrays
Suppose we have a type parameter E and we would like to create a new array. The standard way we would do
this would be: E[] array = new E[SIZE];

Unfortunately, in Java, this will not compile. The underlying reason is how generics are implemented in Java. In
particular, Java cannot figure out what constructor to call for E, because it does not know at runtime what E is.
The workaround is to create an array of a base type (Object, Comparable, etc.) and cast it.

For ArrayStack, you will use the following declaration:
E[] array = (E[])new Object[SIZE];

For CircularArrayFIFOQueue and MinFourHeap in P1, you will use
E[] array = (E[])new Comparable[SIZE];

In P2, you will have to edit MinFourHeap to use new Object[SIZE] instead.

There is a similar issue if we would like to create an array of a parametrized type. For example, if we have a
class (not a type parameter) called Thing which takes a type parameter E, and we would like to create an array
of type Thing<E>[], we would do the following:

Thing<E>[] array = (Thing<E>[])new Thing[SIZE];

That is, here, we are able to create the array, because the type is a real type, but the type E is still not known.
So, we must cast it after creating the array.

Casting Generic Nodes to Specific Nodes
For all the trees (Tries, BSTs, AVL Trees) we will deal with this quarter, there will be a hierarchy of node types.
The field root will usually be of the most general version. For example, for AVLNode, it will be BSTNode, and for
HashTrieNode, it will be TrieNode. This means that you will always have to cast the root immediately after
getting it. That is, anywhere you do this.root in your HashTrieMap, you should cast it like this before use:

(HashTrieNode)this.root

Type Parameters with Restrictions
You may not be familiar with type parameters that have restrictions. In CSE 332, we will never ask you to write
these yourself, but it can be useful to be able to read them. Consider the type definition of TrieMap

TrieMap<A, K extends BString<A>, V> extends Dictionary<K, V>

This should be read in the following way:

• A is any type

• K is a subclass of BString<A>

• V is any type

• TrieMap must be a Dictionary that uses the above definitions of K and V

1


