
CSE 332
Summer 2018
Final Review

1 Parallel Code

Explain the steps you would use to perform the following tasks in parallel. Your algorithm
should have the best possible O() span, but you need not worry about constant factors in this
problem. You may assume you have access to already allocated auxiliary arrays as needed,
and may alter the input array. Use the following parallel code patterns discussed in class:

• out = map(f, arr) Applies f to every element of arr, storing the results in out.

• out = reduce(baseFn, combineFn, arr) Given baseFn on a single element and combineFn

on two arrays (one of which being arr, the other the output of baseFn), reduce stores
the results in out.

• out = parallelPrefixSum(arr) Runs ParallelPrefixSum on arr, storing the results
in out.

• out = pack(condition,arr) Given condition, performs a pack/filter on arr, storing
the results in out.

1. Input: An array of integers, arr
Output:: An array where index i is the sum of the prime numbers in arr at indices
0, ..., i.

Solution: Run map(CompTo0, arr, out) where CompTo0 outputs 0 if the input
is composite and the input itself if it is prime. Then run ParallelPrefixSum(out).

2. Input: arr, an array of integers
Output: True if arr is a valid (0-indexed) representation of a binary min-heap.

Solution: Run map(f, arr, out) where f is arr[i] ≥ arr[(i-1)/2]||i == 0
Run reduce(identity, AND, out).

3. Input: an array arr Output: two arrays, one with elements less than k the other
with elements greater than k.

1

Solution: Pack(< k, arr for the first array, Pack(≥ k, arr for the second.

4. Input: arr an array of integers
Output: an array containing peak elements of arr. An element i is a peak element
if arr[i-1] < arr[i] and arr[i+1] < arr[i].

Solution: This is just a Pack(f, arr with f being arr[i-1] < arr[i] and
arr[i+1] < arr[i].

2 Graph problems

1. You and your trusty Dragonite have just finished your training outside the Pokémon
League. You now feel prepared to take down the Elite Four. There’s just one problem
– you’ve earned none of your badges.

Your goal is to visit each of the n cities with gyms, crush all the gym leaders, and
return to the Pokémon League as quickly as possible.

Describe a graph representation of this problem (For example, what are the vertices
and edges? Is the graph weighted?).

Can you design an algorithm to quickly determine the best possible route? If so describe
it (you may use any algorithm discussed in class as a black box). If not, informally
justify why such an algorithm isn’t likely.

Solution: One possible graph representation is this one: have a vertex for each
of the cities with a gym (and one for the Pokémon League). Edges will represent
routes between the cities. Edges should be weighted with the time it would take to
travel across that route. You could probably leave the graph undirected (as long
as all routes take the same time to walk in each direction).
An efficient algorithm isn’t likely. The question is asking for the optimal tour, i.e.
this is the optimization version of the traveling salesperson problem.
A formal argument (which you’ll see if you take CSE 421) would show that any
instance of TSP could be turned into an instance of this problem.

2. Having just finished summer quarter, you and your friends celebrate with a trip to
Disney Land. You decide to have a contest. Your goal is: starting from the entrance

(a) Ride at least two distinct rides

2

(b) Make it to Splash Mountain

Whoever arrives first is the winner. You have an encyclopedic knowledge of Disney
Land, thus you know how long it takes to walk from any ride to any other, and moreover
you know how much time it takes to go on any ride.

Describe a way to represent this problem as a graph. Then either describe an algorithm
to run to solve the problem, or informally justify that such an algorithm isn’t likely.

Solution: Make a graph representing a map of Disney Land, with a vertex for
each ride, and the walking time as the weight of the edge. If you can walk the same
speed in either direction, you can leave this portion of the graph unweighted. Now
make n+2 copies of this graph. The first of these copies represents before you have
ridden any rides. The next n represent when you have taken exactly one ride (and
record which one you rode), and the final one represents when you have ridden two
(distinct) rides.
Add (directed!) edges as follows: from each ride in the first copy, add an edge to
that ride in one of the n single-ride copies. Weight these edges with the time it
takes to go on that ride. Now from each of the n copies, add an edge for every ride
except the one you’ve already ridden in that graph, to the corresponding vertex
in the final copy. Weight all edges with the ride time.
To solve the problem you can run Dijkstra’s from the entrance in copy 1, with a
target of Splash Mountain in the final copy.
To find the rides to take, just look for the edge that leaves copy 1 and the edge
that enters the final copy. Similarly, by following predecessors we can also find the
route to follow.

3 Running Graph Algorithms

3.1 MST

Consider the following graph:

3

A

R

S

E

Z

M

N

O

16

20

15

11

11

20

12

9

5

10

10

18

Find an MST of this graph using both of the two algorithms we’ve discussed in lecture.
Make sure you say which algorithm you’re using and show your work.

4

Solution:

A

R

S

E

Z

M

N

O

16

20

15

11

11

20

12

9

5

10

10

18

• Using Prim’s algorithm:

Vertex Distance Best Edge Processed

A – – Yes
E 20 18 9 (A,E) (E,Z) (E,R) Yes
M 10 (A,M) Yes
N 15 (N,R) Yes
O 16 10 (A,O) (M,O) Yes
R 11 (R, S) Yes
S 20 11 (M,S) (O, S) Yes
Z 5 (A,Z) Yes

• Using Kruskal’s algorithm:

Edge Include? Reason

(A,Z) Yes –
(E,R) Yes –
(A,M) Yes –
(M,O) Yes –
(O, S) Yes –
(R, S) Yes –
(M,Z) No Cycle (M,A,Z,M)
(N,R) Yes –
(A,O) No Cycle (A,M,O,A)
(E,Z) No Cycle (E,R, S,O,M,A, Z,E)
(A,E) No Cycle (A,M,O, S,R,E,A)
(M,S) No Cycle (M,O, S,M)

5

3.2 Dijkstra

Consider the following graph:

D A B

U J

R F S

16

14

3

113

15

9

18 8

6 19

15

Use Dijkstra’s Algorithm to find the lengths of the shortest paths from D to each of the other
vertices. For full credit, you must show your work at every step. Break ties alphabetically.

Solution:

Vertex Distance Predecessor Processed

A 13 D Yes
B 14 A Yes
D 0 – Yes
F 21 U Yes
J 20 U Yes
R 16 A Yes
S 14 U Yes
U 6 D Yes

3.3 Topo Sort

Consider the following graph:

6

S

D

F

G

Y

J

L

M

Find a topological sort of this graph.

Solution: F, Y, D, G, L, S, J, M is one, there are many more valid solutions.

4 Hash table

1. Suppose we have a hash table that uses separate chaining and has an internal capacity
of 10 (do NOT worry about resizing for this problem). Assume that each bucket is a
linked list where new elements are added to the front of the list.

Insert the following elements in the EXACT order given using the hash function

h(x) = x:

98, 18, 68, 21, 38, 8, 9, 11

Solution: The state of the internal array will be

/ 11→ 21 / / / / / / 8→ 38→ 68→ 18→ 98 9

2. Repeat the same insertions with quadratic probing.

7

Solution: The state of the internal array will be

9 21 68 / 8 11 / 38 98 18

5 B-tree insert and math

Given the following existing B-tree (values not shown):

1. Insert the following keys into the B-tree, showing work:
3, 37, 45, 7, 40, 31

Solution:

2. Delete the following keys from the initial B-tree:
10, 28, 24, 1, 39, 43

8

Solution:

3. Given the following parameters for a B-Tree with M = 16 and L = 13:

• Key Size = 4 bytes

• Pointer Size = 2 bytes

• Data Size = 12 bytes per record (includes the key)

Assuming that M and L were chosen appropriately, what is the likely page size on the
machine where this implementation will be deployed? Give a numeric answer based
on two equations using the parameter values above.

p is the page size in bytes, k is key size in bytes, t is pointer size in bytes, and v
is value size in bytes.

p ≥Mt + (M − 1)k

≥ (16)(2) + (16− 1)(4)

≥ 92

p ≥ L(k + v)

≥ 13(12)

≥ 156

Page size must be at least 156 bytes.

6 Concurrency

Your friend has written the following (somewhat strange) code for a stack.

9

Give a bad interleaving of this code.

Solution: One possible interleaving (there are many) Two threads call push().
Thread A executes the arr[size] = o portion of the code (before incrementing
size). Thread B then executes the same line, overwriting arr[size], and
incrementing size. Thread A then increments size.
This is a bad interleaving because one of the two inserts is lost.

Your friend decides to fix the code by adding some re-entrant locks.

10

Does the code above have a bad interleaving? If so give a bad interleaving. If not informally
justify why there won’t be any.

Solution: There is still a bad interleaving. Consider the following one:
Thread A calls peek, and successfully pops, and releases the lock. Thread B calls
push, and acquires the lock before thread A can acquire it in the pop call. B pushes
a new element on the top of the stack, and releases the lock. Thread A then replaces
the element it popped on top of the stack.
But now the stack is in the wrong state. The most recently added element is not
the one we just added, but the thing thread A popped off the top!

11

Does the code above have potential for deadlock? If so describe an interleaving to cause
deadlock. If not informally justify why deadlock will not occur.

Solution: No. Since there is only one lock, there is no possiblity of deadlock.

Tell your friend a way to improve their code. If you found errors in the previous parts, your
alterations should fix them. If you did not find errors, you should still find a way to improve
the use of synchronization.

Solution: To fix the bad interleaving, peek should also acquire the lock at the
top of the method and release it at the end. Note that the lock must be re-entrant
for this fix to work.
There is another bug to fix – if an exception is thrown in pop, then we will never
release the lock. Putting lk.release() in a finally block is one way to fix this
error.

7 Sort

1. Robbie’s first phone from middle school didn’t have a lot of memory on it. How should
his phone contacts be sorted to put them in last-name, first-name order?

Solution: Since we don’t have much memory, we should use an in-place sort.
Without any further information, quicksort is a good default choice for in-place
sorts (since it’s usually the fastest in practice).

2. MatLab (a mathematical programming language) implements some of its functions
very quickly, on the assumption that the data is mostly sorted already. What kind of
sort are they probably using?

Solution: Insertion sort. It has an O(n) runtime on arrays that are nearly sorted.

3. Caitlin wants to run Radix sort on her extensive collection of books, sorting them
alphabetically with their whole book contents as the input She wants to know not
only if she has multiple copies of something, but also to see if differing versions have
different cotents. Is this a good idea? Explain why either way. If it’s not a good idea,
recommend an input or sort that might work better.

12

Solution: This might not be a great idea. Radix sort depends on the length of
the inputs, and if we’re defining contents as “every word in the book” that’s going
to take a long time.
A better solution would be to sort by titles first (using any of the O(n log n) sorts or
even radix sort), and then separately check whether different versions are identical
with a more detailed check (like a linear scan). This would avoid having to look at
every single word in every single book in the worst case.

8 Amdahl

1. Your company has a program which is 1/8 sequential and 7/8 parallelized. At a
minimum, how many processors do you need for a 4x speedup? For full credit, your
answer must be a simplified fraction or an integer.

Solution: We need 1

1/8+
7/8
P

≥ 4 where P is the number of processors. Multiplying

through by the denominator we get: 1 ≥ 1
2

+ 7/2
P

Simplifying further: 1
2
≥ 7

2P
or

P ≥ 7.
So we will require at least 7 processors.

2. How much of the program would have to be parallelized if you only have four processors?

Solution: Using Amdahl’s law we note 4 ≤ 1
S+(1−S)/P

But then we can simplify
that to:

4S + 4
1− S

P
≤ 1

Plugging in P = 4 we have

4S + (1− S) = 1 + 3S ≤ 1

Thus S must be 0.

13

9 P vs. NP

For each of the following problems, circle all classes which the problem is known to belong.
Determine if there is any pair of vertices
in a graph that are at distance at least k
from each other.

P NP NP-
complete

NP-hard

Find the shortest tour of a weighted graph P NP NP-
complete

NP-hard

Determine if a graph has a topological
sort

P NP NP-
complete

NP-hard

Solution: The first problem is in P and NP. It is in P because it is a decision
problem, and can be solved by running Dijkstra from every vertex. Every problem
in P is in NP. Since it is known to be in P, we can be confident it’s neither NP-
complete or NP-hard (or else we just solved P vs. NP in our exam).
The second problem is only NP-hard. It is not a decision problem, thus it cannot
be any of the first three, but it is a version of TSP, so it’s NP-hard.
The third problem is in P and NP. It is a decision problem with a polynomial time
algorithm (you can find the SCCs and ensure they are all single vertices, or modify
the topological sort algorithm seen in class to check that there is a valid vertex to
add to the sort). As with the first problem, we can rule out NP-completeness and
NP-hardness.

For each of the following statements, say whether it is true or false, and justify your answer
in 1-2 sentences.

If we found an efficient algorithm for 2-SAT, we would have a polynomial time algorithm for
every problem in NP.

Solution: False. 2-SAT is not NP-hard. We saw a polynomial time algorithm in
class.

If we find an efficient algorithm for TSP, we would have a polynomial time algorithm for
every NP-hard problem.

14

Solution: False. The claim is true if you replace “NP-hard” with “NP” or “NP-
complete” but NP-hard problems include things like n × n chess (which we know
has no polynomial time algorithm) and the Halting Problem (which we know has
no algorithms of any kind).

15

	Parallel Code
	Graph problems
	Running Graph Algorithms
	MST
	Dijkstra
	Topo Sort

	Hash table
	B-tree insert and math
	Concurrency
	Sort
	Amdahl
	P vs. NP

