CSE 332
Summer 2018
Section 7 — recurrence solutions

1. Show that quicksort with sequential partitioning, but parallel recursive sorting, has
O(n), span by solving the recurrence relation shown in lecture:

T(n) = {T(n/Q) +an ifn> 1‘
Co othwerise

Solution:

(a) Size of the input at level 4 .
(b) Number of nodes at level i: 1

(c)

(d) Last level of the tree when n/2" = 1 i.e. logy(n).
(e)

(f)

c) Work done at recursive level i: 1 - ¢y5;

Base case work: 1 - ¢,.
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This is O(n) as claimed.

simplification




2. Show that a completely parallel quicksort, (i.e. quicksort with parallel partition and

recursion) has span O(log*(n)), by solving the recurrence relation shown in lecture:

T(n) = {T(n/2) + ¢y logn

C2

ifn>2

otherwise

Solution:

(a) Size of the input at level 4: .

(b) Number of nodes at level i: 1

(c) Work done at recursive level i: 1- ¢ log (%)

)
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(e) Base case work: 1 - c,.
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This is O(log®(n)) as claimed.

Last level of the tree when n/2° =1 i.e. logy(n).

factoring

log(ab) = loga + logb

split sums

logs and exponents are inverses

closed forms

algebra




3. Show that completely parallel mergesort (i.e.

mergesort with parallel merging and

recursion) has span O(log®(n)) by solving the recurrence shown in lecture:

ifn>2

T(n) = {Z;(n/ 2) + ¢1log*(n)

otherwise

Solution:

(a) Size of the input at level i: ;.

(b) Number of nodes at level i: 1
(
(
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c¢) Work done at recursive level i: 1 - ¢; log® (23)
d) Last level of the tree when n/2" = 1 i.e. logy(n).
)
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(e) Base case work: 1 - cs.
(f) Total work:
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This is a valid closed form.
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We'll simplify further to see the O() more easily

= ¢; |log?(n) + (log(n) — 1)(1Og(6n))(210g(n) — 1)} e

This is O(log®(n)) as claimed.

factoring

because log(ab) = loga + logb

expanding multiplication

splitting sum

closed forms we’ll give you.

cancellation in first two terms




