
CSE 332
Summer 2018
Section 7 – recurrence solutions

1. Show that quicksort with sequential partitioning, but parallel recursive sorting, has
O(n), span by solving the recurrence relation shown in lecture:

T (n) =

{
T (n/2) + c1n if n ≥ 1

c2 othwerise

Solution:

(a) Size of the input at level i: n
2i

.

(b) Number of nodes at level i: 1

(c) Work done at recursive level i: 1 · c1 n
2i

(d) Last level of the tree when n/2i = 1 i.e. log2(n).

(e) Base case work: 1 · c2.
(f) Total work:

T (n) =

log(n)−1∑
i=0

c1
n

2i
+ c2

= c1n

log(n)−1∑
i=0

1

2i
+ c2 factoring

= c1n

(
1
2

)logn − 1

1/2− 1
+ c2 finite geometric series formula

= c1n
1/n− 1

1/2− 1
+ c2 logs and exponents are inverses

= c1n

(
1/n

−1/2
− 1

−1/2

)
+ c2 splitting fraction

= 2c1n− 2c1 + c2 simplification

This is O(n) as claimed.

1

2. Show that a completely parallel quicksort, (i.e. quicksort with parallel partition and
recursion) has span O(log2(n)), by solving the recurrence relation shown in lecture:

T (n) =

{
T (n/2) + c1 log n if n ≥ 2

c2 otherwise

.

Solution:

(a) Size of the input at level i: n
2i

.

(b) Number of nodes at level i: 1

(c) Work done at recursive level i: 1 · c1 log
(
n
2i

)
(d) Last level of the tree when n/2i = 1 i.e. log2(n).

(e) Base case work: 1 · c2.
(f) Total work:

T (n) =

log(n)−1∑
i=0

c1 log
(n

2i

)
+ c2

= c1

log(n)−1∑
i=0

log
(n

2i

)
+ c2 factoring

= c1

log(n)−1∑
i=0

log(n)− log(2i) + c2 log(ab) = log a + log b

= c1

log(n)−1∑
i=0

log(n)−
log(n)−1∑

i=0

log(2i)

+ c2 split sums

= c1

log(n)−1∑
i=0

log(n)−
log(n)−1∑

i=0

i

+ c2 logs and exponents are inverses

= c1

[
log2(n)− log(n)(log(n)− 1)

2

]
+ c2 closed forms

= c1

[
log2(n)

2
+

log(n)

2

]
+ c2 algebra

This is O(log2(n)) as claimed.

2

3. Show that completely parallel mergesort (i.e. mergesort with parallel merging and
recursion) has span O(log3(n)) by solving the recurrence shown in lecture:

T (n) =

{
T (n/2) + c1 log2(n) if n ≥ 2

c2 otherwise

Solution:

(a) Size of the input at level i: n
2i

.

(b) Number of nodes at level i: 1

(c) Work done at recursive level i: 1 · c1 log2
(
n
2i

)
(d) Last level of the tree when n/2i = 1 i.e. log2(n).

(e) Base case work: 1 · c2.
(f) Total work:

T (n) =

log(n)−1∑
i=0

c1 log2
(n

2i

)
+ c2

= c1

log(n)−1∑
i=0

log2
(n

2i

)
+ c2 factoring

= c1

log(n)−1∑
i=0

[
log (n) + log

(
2−i
)] [

log(n) + log(2−i)
]

+ c2 because log(ab) = log a + log b

= c1

log(n)−1∑
i=0

[
log2(n)− 2i log(n) + i2

]
+ c2 expanding multiplication

= c1

log(n)−1∑
i=0

log2(n)−
log(n)−1∑

i=0

2i log(n) +

log(n)−1∑
i=0

i2

+ c2 splitting sum

= c1

[
log3(n)− 2 log(n)

log(n)(log(n)− 1)

2
+

(log(n)− 1)(log(n))(2 log(n)− 1)

6

]
+ c2 closed forms we’ll give you.

This is a valid closed form.

We’ll simplify further to see the O() more easily

= c1

[
log2(n) +

(log(n)− 1)(log(n))(2 log(n)− 1)

6

]
+ c2 cancellation in first two terms

This is O(log3(n)) as claimed.

3

