
CSE 332 Summer 18
Section 05

1 Hashing: Mechanical

1. Suppose we have a hash table that uses separate chaining and has an internal capacity
of 12 (do NOT worry about resizing for this problem. Assume that each bucket is a
linked list where new elements are added to the front of the list.

Insert the following elements in the EXACT order given using the hash function

h(x) = 4x:

0, 4, 7, 1, 2, 3, 6, 11, 16

2. Suppose we have a hash table that uses linear probing and has an internal capacity of
13.

Insert the following elements in the EXACT order given using the hash function h(x) =
3x:

2, 4, 6, 7, 15, 13, 19

1



3. Suppose we have a hash table that uses quadratic probing and has an internal capacity
of 10.

Insert the following elements in the EXACT order given using the hash function h(x) =
x:

0, 1, 2, 5, 15, 25, 35

4. Consider the following key-value pairs.

(6, a), (29, b), (41, d). (34, e), (10, f), (64, g), (50, h)

Suppose each key has a hash function h(k) = 2k. So, the key 6 would have a hash
code of 12. Insert each key-value pair into the following hash tables and draw what
their internal state looks like:

(a) A hash table that uses separate chaining. The table has an internal capacity of
10. Assume each bucket is a linked list, where new pairs are appended to the end.
Do not worry about resizing.

2



(b) A hash table that uses linear probing, with internal capacity 10. Do not worry
about resizing.

(c) A hash table that uses quadratic probing, with internal capacity 10. Do not worry
about resizing.

5. Consider the three hash tables in the previous question. What are the load factors of
each hash table?

3



2 Hashing: Conceptual

1. What is the difference between primary clustering and secondary clustering in hash
tables?

2. Suppose we implement a hash table using double hashing. Is it possible for this hash
table to have clustering?

3. Suppose we have a hash table with an initial capacity of 12. We resize the hash table
by doubling the capacity. Suppose we insert integer keys into this table using the
hash function h(x) = 4x. Why is this choice of hash function and initial capacity
suboptimal? How can we fix it?

4. Suppose we have a hash table with an initial capacity of 8 using linear probing. We
resize the hash table by doubling the capacity.

Suppose we insert the integer keys 220, 2 · 220, 3 · 220, 4 · 220. . . using the hash function
h(x) = x.

Describe what the runtime of the dictionary operations will over time as you keep
adding these keys to the table.

4



3 Hashing: Code Analysis

For this problem, we will consider a hypothetical hash table that uses linear probing and
implements the Dictionary interface. Specifically, we will focus on analyzing and testing
one potential implementation of the remove method.

1. Come up with at least 4 different test cases to test this remove(...) method. For each
test case, describe what the expected outcome is (assuming the method is implemented
correctly).

Try and construct test cases that check if the remove(...) method is correctly using
the key’s hash code. (You may assume that you can construct custom key objects that
let you customize the behavior of the equals(...) and hashCode() method.)

5



2. Now, consider the following (buggy) implementation of the remove(...) method. List
all the bugs you can find.

public class LinearProbingDictionary<K, V> implements IDictionary<K, V> {

// Field invariants:

//

// 1. Empty, unused slots are null

// 2. Slots that are actually being used contain an instance

// of a Pair object

private Pair<K, V>[] array;

// ...snip...

public V remove(K key) {

int index = key.hashCode();

while ((this.array[index] != null)

&& !this.array[index].key.equals(key)) {

index = (index + 1) % this.array.length;

}

if (this.array[index] == null) {

throw new NoSuchKeyException();

}

V returnValue = this.array[index].value;

this.array[index] = null;

return returnValue;

}

}

3. Briefly describe how you would fix these bug(s).

6



4 B-Trees

1. Insert the following into an empty B-Tree with M = 3 and L = 3: 12, 24, 36, 17, 18,
5, 22, 20.

2. Given the following parameters for a B-Tree with M = 11 and L = 8:

• Key Size = 10 bytes

• Pointer Size = 2 bytes

• Data Size = 16 bytes per record (includes the key)

Assuming that M and L were chosen appropriately, what is the likely page size on the
machine where this implementation will be deployed? Give a numeric answer based
on two equations using the parameter values above. Hint: Some equations you might
need to use are:

M = bp + k

t + k
c

L = b p

k + v
c

where p is the page size in bytes, k is key size in bytes, t is pointer size in bytes, and
v is value size in bytes. Hint: Think about where these values come from.

7



3. Give an example of a situation that would be a good job for a B-tree. Furthermore,
are there any constraints on the data that B-trees can store?

4. Find a tight upper bound on the worst case runtime of these operations on a B-tree.
Your answers should be in terms of L, M , and n.

(a) Insert a key-value pair

(b) Look up the value of a key

(c) Delete a key-value pair

8



5. Insert and then delete the following from a B-tree:

(a) Insert the following into an empty B-Tree with M = 3 and L = 3: 3, 18, 14, 30,
32, 36, 15, 16, 12, 40, 45, 38.

(b) Delete 45, 14, 15, 36, 32, 18, 38, 40, 12 from the tree in the previous part.

9



5 Memory

1. What are the two types of memory locality?

2. Does this more benefit arrays or linked lists?

3. What about Java makes it a poor choice for implementing B-trees?

6 Memory and B-Trees

1. Based on your understanding of how computers access and store memory, why might
it be faster to access all the elements of an array-based queue than to access all the
elements of a linked-list-based queue?

2. Why might f2 be faster than f1?

public void f1(String[] strings) {

for (int i=0; i < strings.length; i++) {

strings[i] = strings[i].trim(); // omits trailing/leading whitespace

}

for (int i=0; i < strings.length; i++) {

strings[i] = strings[i].toUpperCase();

}

}

10



public void f2(String[] strings) {

for (int i=0; i < strings.length; i++) {

strings[i] = strings[i].trim(); // omits trailing/leading whitespace

strings[i] = strings[i].toUppercase();

}

}

3. Let k be the size of a key, t be the size of a pointer, and v be the size of a value.

Write an expression (using these variables as well as M and L) representing the size
of an internal node and the size of a leaf node.

4. Suppose you are trying to implement a B-tree on a computer where the page size (aka
the block size) is p = 130 bytes.

You know the following facts:

• Key size k = 10 bytes

• Value size v = 6 bytes

• Pointer size t = 2 bytes

What values of M and L should you pick to make sure that your internal and external
nodes (a) fit within a single page and (b) uses as much of that page as possible.

Be sure to show your work.

11



5. Consider the following “B-Tree”:

(a) What are M and L?

(b) Is there anything wrong with the above B-Tree? If so, what is wrong?

6. Consider the following code:

public static int sum(List<Integer> list) {

int output = 0;

for (int i = 0; i < 128; i++) {

// Reminder: foreach loops in Java use the iterator behind-the-scenes

for (int item : list) {

output += item;

}

}

return output;

}

12



You try running this method twice: the first time, you pass in an array list, and the
second time you pass in a linked list. Both lists are of the same length and contain the
exact same values.

You discover that calling sum on the array list is consistently 4 to 5 times faster then
calling it on the linked list. Why do you suppose that is?

7. Suppose you are trying to use a B-Tree somebody else wrote for your system. You
know the following facts:

• M = 10 and L = 12

• The size of each pointer is 16 bytes

• The size of each key is 14 bytes

• The size of each value is 11 bytes

Assuming M and L were chosen wisely, what is most likely the page size on this system?

7 Memory and B-Trees: A Sequel

1. Suppose you’ve finished writing your AVLTree Dictionary. Right? Out of curiosity, you
try replacing it with a SortedArrayDictionary. You expect this to make no difference
since iterating over either dictionary using their iterator takes worst-case Θ(n) time.

To your surprise, iterating over SortedArrayDictionary is consistently almost 10
times faster!

Based on your understanding of how computers organize and access memory, why do
you suppose that is? Be sure to be descriptive.

13



2. Excited by your success, you next try comparing the performance of the get(...)

method. You expected to see the same speedup, but to your surprise, both dictionaries’
get(...) methods seem to consistently perform about the same.

Based on your understanding of how computers organize and access memory, why do
you suppose that is?

(Note: assume that the SortedArrayDictionary’s get(...) method is implemented
using binary search.)

3. You want to implement a B-Tree for a computer that has a page or block size of p = 256
bytes. Your pointers are t = 4 bytes long, your keys are k = 2 byte long, and your
values are v = 8 bytes long. What should you select for M and L in order to maximize
the performance of your B-tree? Please show your work.

Reminder: M and L must selected such that the following two inequalities remain
true:

Mt + (M − 1)k ≤ p and L(k + v) ≤ p

14



8 Challenge Problem: Random Hash Functions

In class we talked about various strategies to minimize collisions. In this question we discuss
how to use randomness to “spread out” collisions from a small set of very bad inputs into a
larger set of almost-always-fine inputs. The last two parts of this problem are beyond the
scope of this course, but are interesting nonetheless.

For simplicity, assume our keyspace (the set of possible keys) is the set {0, 1, 2, . . . , 230− 1}.
Suppose we have a hashtable of size 210. Let a be an odd integer less than 230.

Consider the hash function

ha(x) =

⌊
(ax) mod 230

220

⌋
Notice that the function changes depending on the value of a we choose, so this is really a
set of possible functions.

1. Show that for any a, ha outputs an integer between 0 and 210− 1 (i.e. we can use this
as a hash function for our table size)

2. Choose a = 1, i.e. the hash function simplifies to

h1(x) =

⌊
x mod 230

220

⌋
For this function, find a large set of elements that all hash to 0.

15



3. Let x, y be any of the two elements you found in the last part. Choose a few thousand
values of a, and check whether ha(x) = ha(y) for each of them (write code for this
part). For what fraction of these hash functions do x, y collide? If the values of the
hash function were totally random, how often would you expect collisions?

4. The following statement is true (explaining why is beyond the scope of the course):
For any x, y if you choose a at random, the probability that ha(x) = ha(y) is at most
2/210.

Use this fact, or your observations in the last part, to Explain why you might decide
to choose a random a instead of just choosing a = 1 (hint: imagine you know someone
is using the hash function with a = 1, how can you use the first part to slow their code
down? Can you do the same for a random a?)

16


	Hashing: Mechanical
	Hashing: Conceptual
	Hashing: Code Analysis
	B-Trees
	Memory
	Memory and B-Trees
	Memory and B-Trees: A Sequel
	Challenge Problem: Random Hash Functions

