CSE 332 Summer 18 Section 03

1 Solving Recurrences

For each of the following recurrences, use the tree method to find a closed form of the recurrence.

When using the tree method, you should do the following steps.

- 0. Draw at least the first two levels of the recursion tree, and the leaf level of the tree.
- 1. Let the root node be at level 0. Give a formula for the size of the input at level i.
- 2. What is the number of nodes at level i?
- 3. What is the work done at the i^{th} recursive level?
- 4. What is the last level of the tree?
- 5. What is the work done at the base case?
- 6. Write an expression for the total work done. Your expression should include a summation.
- 7. Find a "closed form" of the formula in the previous part. To qualify as a closed form, it must not have any summations or recursion, but it does not have to "look nice."
- 8. If possible, use Master Theorem to sanity check your answer.

a)
$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(n/2) + 3 & \text{otherwise} \end{cases}$$

b)
$$T(n) = \begin{cases} 1 & \text{if } n = 0 \\ T(n-1) + 2 & \text{otherwise} \end{cases}$$

c)
$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ 3T(n/3) + n & \text{otherwise} \end{cases}$$

d)
$$T(n) = \begin{cases} 1 & \text{if } n = 3 \\ 2T(n/3) + n & \text{otherwise} \end{cases}$$

e)
$$T(n) = \begin{cases} 2 & \text{if } n = 4 \\ 4T(n/2) + n^2 & \text{otherwise} \end{cases}$$

2 Writing Recurrences

Answer the following questions about these pseudocode snippets. In cases where you are describing the running time, you should describe the non-recursive work using a simple function. For example, if the total number of non-recursive operations was 2n + 4 you can describe this as just $c \cdot n$ (where c is a constant, and we ignore the lower-order term).

a)	function $F(n)$
	if $n == 0$ then
	return 1
	else
	$\mathbf{return} \ 2 \cdot \mathtt{F}(n-1) + 1$
	end if
	end function

- Write a recurrence to describe the output of the function.
- Write a recurrence to describe the running time of the function.

```
b) function F(n)

if n == 0 then

return 0

end if

result \leftarrow 0

for i from 0 to n - 1 do

for j from 0 to i do

result \leftarrow result +j

end for

return F(n/2) + \text{result} + F(n/2)

end function
```

- Write a recurrence to model the running time of this function.
- Find a Big- Θ bound by solving your recurrence.

c)	function $G(n)$
	if $n \leq 1$ then
	return 1000
	end if
	if $G(n/3) > 5$ then
	for <i>i</i> from 0 to $n-1$ do
	print "YAY!"
	end for
	return $5 \cdot G(n/3)$
	else
	for <i>i</i> from 0 to $n^2 - 1$ do
	print "YAY!"
	end for
	$\mathbf{return} \ 4 \cdot \mathtt{G}(n/3)$
	end if
_	end function

- For what values of n do we reach the "else" branch?
- $\bullet\,$ Write a recurrence to describe the worst case running time of ${\tt G}.$
- Find a big- Θ bound on the running time by solving your recurrence.