
CSE 332 Summer 18
Section 03

1 Solving Recurrences

For each of the following recurrences, use the tree method to find a closed form of the
recurrence.

When using the tree method, you should do the following steps.

0. Draw at least the first two levels of the recursion tree, and the leaf level of the tree.

1. Let the root node be at level 0. Give a formula for the size of the input at level i.

2. What is the number of nodes at level i?

3. What is the work done at the ith recursive level?

4. What is the last level of the tree?

5. What is the work done at the base case?

6. Write an expression for the total work done. Your expression should include a sum-
mation.

7. Find a “closed form” of the formula in the previous part. To qualify as a closed form,
it must not have any summations or recursion, but it does not have to “look nice.”

8. If possible, use Master Theorem to sanity check your answer.

1



a) T (n) =

{
1 if n = 1

T (n/2) + 3 otherwise

Solution:

1. n
2i

2. 1

3. 1 · 3
4. We want the i such that n

2i
= 1. Solving we get log2(n) as the last level.

5. 1 · 1

6.
log2(n)−1∑

i=0

3 + 1

7. 3 log2(n) + 1

8. Since log2(1) = 0 so the Master theorem says we should get Θ(n0 log n) i.e.
Θ(log n), which matches our answer from the last part.

b) T (n) =

{
1 if n = 0

T (n− 1) + 2 otherwise

Solution:

1. n− i

2. 1

3. 2 · 1
4. We want the level i at which n− i = 0, so we want level n.

5. 1 · 1

6.
n−1∑
i=0

2 + 1

7. 2n + 1

8. Master Theorem does not apply here :/

2



c) T (n) =

{
1 if n = 1

3T (n/3) + n otherwise

Solution:

1. n
3i

2. 3i

3. n
3i
· 3i = n

4. The level i at which n
3i

= 1 i.e. log3(n).

5. 3log3(n) · 1 = n

6.
log3(n)−1∑

i=0

n + n

7. n log3(n) + n

8. log3(3) = 1, so Master Theorem says Θ(n log n), which is consistent with our
answer.

3



d) T (n) =

{
1 if n = 3

2T (n/3) + n otherwise

Solution:

1. n
3i

2. 2i

3. 2i n
3i

= n
(
2
3

)i
4. The level i such that n

3i
= 3 so log3(n)− 1 is the last level.

5. 2log3(n)−1 · 1

6.
log3(n)−2∑

i=0

n
(
2
3

)i
+ 2log3(n)−1

7. Applying the finite geometric series formula we get:

n

(
2
3

)log3(n)−1 − 1
2
3
− 1

+ 2log3(n)−1

Looks pretty ugly, but it’s a closed form. So we’ll stop here.

8. log3(2) < 1 so we should get Θ(n). The crazy formula from the last part is
actually Θ(n). The second term is on the order of nlog3(2), which is asymptotically
less than n (since log3(2) < 1) In the first term, the denominator is negative,

so it’s really n
(
c− c′

(
2
3

)log3(n)−1) (where c, c′ are constants. As n gets larger,(
2
3

)log3(n)−1 is getting smaller. So cn really is the dominating term.

4



e) T (n) =

{
2 if n = 4

4T (n/2) + n2 otherwise

Solution:

1. n
2i

2. 4i

3. 4i ·
(
n
2i

)2
= n2.

4. We want the level i where 4 = n
2i

, so we want level log2(n)− 2.

5. 4log2(n)−2 · 2 = 22 log2(n)−3 = n2

8

6.
log2(n)−3∑

i=0

n2 + n2

8

7. (log2(n)− 2)n2 + n2

8

8. log2(4) = 2, so Master Theorem predicts Θ(n2 log n), which matches our answer.

2 Writing Recurrences

Answer the following questions about these pseudocode snippets. In cases where you are
describing the running time, you should describe the non-recursive work using a simple
function. For example, if the total number of non-recursive operations was 2n + 4 you can
describe this as just c · n (where c is a constant, and we ignore the lower-order term).

a) function F(n)
if n == 0 then

return 1
else

return 2 · F(n− 1) + 1
end if

end function

• Write a recurrence to describe the output of the function.

5



Solution:

P (n) =

{
1 if n = 0

2P (n− 1) + 1 otherwise

• Write a recurrence to describe the running time of the function.

Solution:

T (n) =

{
c1 if n = 0

T (n− 1) + c2 otherwise

where c1, c2 are constants.

b) function F(n)
if n == 0 then

return 0
end if
result ← 0
for i from 0 to n− 1 do

for j from 0 to i do
result ← result +j

end for
end for
return F(n/2) + result + F(n/2)

end function

• Write a recurrence to model the running time of this function.

Solution:

T (n) =

{
c1 if n = 0

2T (n/2) + c2n
2 otherwise

Where c1, c2 are constants.

• Find a Big-Θ bound on the running time.

Solution: Applying the master theorem, since log2(2) < 2 is Θ(n2). We could
also solve the recurrence with the tree method to get this bound.

6



c) function G(n)
if n ≤ 1 then

return 1000
end if
if G(n/3) > 5 then

for i from 0 to n− 1 do
print ”YAY!”

end for
return 5 · G(n/3)

else
for i from 0 to n2 − 1 do

print ”YAY!”
end for
return 4 · G(n/3)

end if
end function

• For what values of n do we reach the “else” branch?

Solution: No values of n use the else branch. It was a trick – the else branch is
actually dead code.

• Write a recurrence to describe the worst case running time of G.

Solution:

T (n) =

{
1 if n ≤ 1

2T (n/3) + cn otherwise

Where c is some constant.

• Find a big-Θ bound on the running time by solving the recurrence.

Solution: We actually did almost exactly this in Section 1 (part d), with just n
instead of cn, and hitting the base case a little earlier. The small difference in the
definition doesn’t affect the Θ(n) bound we got there.

7


