CSE 332 Summer 18 Section 02

\mathcal{O}, Ω , and Θ oh my!

Give a formal proof of each of the following statements, along with the scratch-work to find the c and n_0 .

(a) 5n + 7 is O(n)

Solution: Scratch work: $5n \leq 5 \cdot n$ for all n $7 \leq n$ for $n \geq 7$ So $5n + 7 \leq 6n$ for $n \geq 7$. *Proof.* We take c = 6 and $n_0 = 7$. For $n \geq n_0$ we have both of the following inequalities: $5n \leq 5n$ and $7 \leq n$ Adding together the two inequalities we have: $5n + 7 \leq 6n$ as long as $n \geq n_0$, which is what we needed to show.

(b) $3n^2 - 17n$ is $O(n^2)$

Solution: Scratch work: $3n^2 \leq 3 \cdot n^2$ for all n $-17n \leq 0 \cdot n^2$ if $n \geq 1$ Take c = 3 + 0 = 3 and $n_0 = 1$.

Proof. We take c = 3 and $n_0 = 1$. For n at least 1, -17n is negative, so it is certainly at most $0 = 0n^2$, and $3n^2$ is always at most $3n^2$. Adding together these inequalities we get $3n^2 - 17n \leq 3n^2$ for $n \geq 1$, which is what we wanted to show. \Box

(c) $\log_5(n)$ is $\Omega(\log_3(n))$

Solution: Scratch work: Applying the change of base formula, $\log_5(n) = \frac{\log_3(n)}{\log_3(5)}$.

Proof. We take $c = \frac{1}{\log_3(5)}$, and $n_0 = 1$. Applying the change-of-base formula:

$$\log_5(n) = \frac{\log_3(n)}{\log_3(5)} \ge c \cdot \log_3(n)$$

for all $n \ge 1$.

(d) $2n^3 + 3$ is $\Theta(n^3)$

Solution: This is basically two proofs in one. Scratch work for O: $2n^3 \le 2n^3$ $3 \le 3n^3$ for $n \ge 1$. Scratch work for $\Omega:$ $2n^3 \ge 2n^3$ $3 \ge 0n^3$

Proof. To show $2n^3 + 3$ is $O(n^3)$, we take c = 5 and $n_0 = 1$. We have the following inequalities for $n \ge 1$:

 $2n^3 \leq 2n^3$ and $3 \leq 3n^3$

Adding these inequalities together gives: $2n^3 + 3 \leq 5n^3$, as required. Thus $2n^3 + 3$ is $O(n^3)$. To show $2n^3 + 3$ is $\Omega(n^3)$, we take c = 2 and $n_0 = 1$. We have $2n^3 + 3 \geq 2n^3 = c \cdot n^3$,

which is what we needed to show to conclude $2n^3 + 3$ is $\Omega(n^3)$. Combining these two statements we have $2n^3 + 3$ is $\Theta(n^3)$.