
CSE 332: Summer 18
Section 01 Quick Check.

1 Odd Jobs

For each of the following scenarios, choose

(1) an ADT: Stack or Queue , and
(2) a data structure: Array or LinkedList with front or LinkedList with front and back

Then, explain why your choice works better than the other options.

WorkList Situations

You’re designing a tool that checks code to verify that all opening brackets, braces, paren-
theses, . . . have closing counterparts.

Solution: We’d use the Stack ADT, because we want to match the most recent
bracket we’ve seen first.
Since Stacks push and pop on the same end, there is no reason to use an imple-
mentation with two pointers. (We don’t need access to the “back” ever.)
Asymptotically, there is no difference between the LinkedList with a front pointer
and the Array implementation, but cache locality will likely be a problem with the
LinkedList. (Remember, arrays are contiguous in memory, but linked lists are
stored using arbitrary pointers.)

Disneyland has hired you to find a way to improve the processing efficiency of their long
lines at attractions. There is no way to forecast how long the lines will be.

1



Solution: We’d use the Queue ADT here, because we’re dealing with. . . a line.
The important thing to note here is that if we try to use the implementation of a
LinkedList with only a front pointer, either add or next will be very slow. That
is clearly not a good choice.
Arguably, the LinkedList implementation with both pointers is better than the
array implementation because we will never have to resize it.

A sandwich shop wants to serve customers in the order that they arrived, but also wants to
look ahead to know what people have ordered and how many times to maximize efficiency
in the kitchen.

Solution: This is still clearly the Queue ADT, but it’s unclear that any of these
implementations are a good choice!
One of the cool things about data structures is that if only one isn’t good enough,
you can use two. If we only care about the “normal queue features”, then we would
probably use the LinkedList implementation with one pointer. However, we can
ALSO simultaneously use a Map to store the “number of times a food item appears
in the queue”.
This is still actually a WorkList! It has the same interface!! But, in the implemen-
tation, we update both the map and the queue whenever something changes.

2


