
More Graph Algorithms Data Structures and

Algorithms

Announcements

Talk on technical interviews today!
Gugenheim 220 at 1:10 PM.

Para Exercise feedback soon.

P2 Feedback (hopefully) Saturday.

Announcements

Please fill out course evaluations.

They’ll be helpful for me.

They’ll also be helpful for CSE/future students.

Balancing preparing you for future courses and not overworking you is
hard.

Tell us the parts of the quarter that were particular pain points.

Minimum Spanning Trees

It’s the 1920’s. Your friend at the electric company needs to choose
where to build wires to connect all these cities to the plant.

A

B

D

E

C

3
6

2

1

4

5

8

9
10

7

She knows how much it would cost to lay electric wires between any

pair of locations, and wants the cheapest way to make sure electricity

from the plant to every city.

Prim’s Algorithm

PrimMST(Graph G)

initialize distances to ∞

mark source as distance 0

mark all vertices unprocessed

foreach(edge (source, v))

v.dist = weight(source,v)

v.bestEdge = (source,v)

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

add u.bestEdge to spanning tree

foreach(edge (u,v) leaving u){

if(weight(u,v) < v.dist AND v not processed){

v.dist = weight(u,v)

v.bestEdge = (u,v)

}

}

mark u as processed

}

Running time:

O(|V| log |V| + |E| log |V|)

Connected Component

A

Connected Component – A set of vertices such that

-There is a path between every pair of vertices

-If you added any other vertex to the set, there would not be a path
between every pair of vertices.

B

C

D
E

F

G

H

{A,B,C,D} is not a connected

component (could add E)

{F,G,H} and {A,B,C,D,E} are

connected components.

Kruskal’s Algorithm

KruskalMST(Graph G)

initialize each vertex to be a connected component

sort the edges by weight

foreach(edge (u, v) in sorted order){

if(u and v are in different components){

add (u,v) to the MST

Update u and v to be in the same component

}

}

How do we check the if statement?

BFS would lead to an overall running time of 𝑂(|𝐸|(|𝑉| + |𝐸|))

Union-Find Crash Course

aka Disjoint Sets

Represents…well…disjoint sets.

Union-Find ADT

makeSet(x) – creates a new set where the only

member (and the representative) is x.

state

behavior

Set of Sets

- Disjoint: No element appears in multiple sets

- No required order

- Each set has representative

findSet(x) – looks up the set containing

element x, returns representative of that set

union(x, y) – combines set containing x and

set containing y. Picks new representative.

Union-Find Running Time

We don’t have time to talk about an implementation.

Here’s the important thing:

Can do these operations in:

Operation Amortized Non-amortized

MakeSet() Θ(1) Θ(1)

Union() 𝑂(log∗ 𝑛) Θ(log 𝑛)

Find() 𝑂(log∗ 𝑛) Θ(log 𝑛)

log∗ 𝑛

log∗ 𝑛

the number of times you need to apply log() to get a number at most 1.

E.g. log∗(16) = 3

log 16 = 4 log 4 = 2 log 2 = 1.

log∗ 𝑛 grows ridiculously slowly.

log∗ 1080 = 5.

For all practical purposes these operations are constant time.

Using Union-Find

Have each disjoint set represent a connected component.

How do you see if two vertices are in the same component?
-

What happens when you add an edge?

Using Union-Find

Have each disjoint set represent a connected component.

How do you see if two vertices are in the same component?

- find() on both

-The representatives are the same if and only if the components are the
same.

What happens when you add an edge?

-Union the two components

Now With Disjoint Sets

KruskalMST(Graph G)

foreach(Vertex v){ makeSet(v) }

sort the edges by weight

foreach(edge (u, v) in sorted order){

if(find(u) != find(v)){

add (u,v) to the MST

union(u,v)

}

}

Running Time?

Dominated by sorting.

𝑂 𝐸 log E .

Try it Out

A

B

D
F

E

C

50
6

3

4

7

2

8

9
5

7

G

2

Edge Include? Reason

(A,B) Yes

(C,D) Yes

(B,F) Yes

(A,C) Yes

(C,E) Yes

(B,E) No Cycle A,C,D,B,A

(A,D) No Cycle A,D,C

(D,E) No Cycle C,D,E

(D,F) No Cycle A,B,F,D,C,A

(E,F) No Cycle E,F,B,A,C,E

(B,G) Yes

Some Extra Comments

Prim was the employee at Bell Labs in the 1950’s

The mathematician in the 1920’s was Boruvka

-He had a different also greedy algorithm for MSTs.

-Boruvka’s algorithm is trickier to implement, but is useful in some
cases.

-In particular it’s the basis for fast parallel MST algorithms.

There’s at least a fourth greedy algorithm for MSTs…

If all the edge weights are distinct, then the MST is unique.

If some edge weights are equal, there may be multiple spanning trees.
Prim’s/Kruskal’s are only guaranteed to find you one of them.

Aside: A Graph of Trees

A tree is an undirected, connected, and acyclic graph.

How would we describe the graph Kruskal’s builds?

It’s not a tree until the end.

It’s a forest!

A forest is any undirected and acyclic graph

EVERY TREE IS A FOREST.

Topological Sort

Problem 1: Ordering Dependencies

Today’s next problem: Given a bunch of courses with prerequisites, find
an order to take the courses in.

Math 126

CSE 142

CSE 143

CSE 311

CSE 331

CSE 332

Problem 1: Ordering Dependencies

Given a directed graph G, where we have an edge from u to v if u must
happen before v.

Can we find an order that respects dependencies?

Given: a directed graph G

Find: an ordering of the vertices so all edges go from left to right.

Topological Sort (aka Topological Ordering)

Uses:

Compiling multiple files

Graduating.

Topological Ordering

A course prerequisite chart and a possible topological ordering.

Math 126

CSE 142

CSE 143

CSE 311

CSE 331

CSE 332

Math 126 CSE 142 CSE 143 CSE 311 CSE 331 CSE 332

Can we always order a graph?

A graph has a topological ordering if and only if it is a DAG.

A directed graph without any cycles.

Directed Acyclic Graph (DAG)

A

B C

Can you topologically order this graph?

Ordering a DAG

Does this graph have a topological ordering? If so find one.

A

B

C

E

D

Ordering a DAG

Does this graph have a topological ordering? If so find one.

A

B

C

E

D

If a vertex doesn’t have any edges going into it, we can add it to the

ordering.

More generally, if the only incoming edges are from vertices already in the

ordering, it’s safe to add.

How Do We Find a Topological Ordering?

TopologicalSort(Graph G, Vertex source)

count how many incoming edges each vertex has

Collection toProcess = new Collection()

foreach(Vertex v in G){

if(v.edgesRemaining == 0)

toProcess.insert(v)

}

topOrder = new List()

while(toProcess is not empty){

u = toProcess.remove()

topOrder.insert(u)

foreach(edge (u,v) leaving u){

v.edgesRemaining--

if(v.edgesRemaining == 0)

toProcess.insert(v)

}

}

What’s the running time?

TopologicalSort(Graph G, Vertex source)

count how many incoming edges each vertex has

Collection toProcess = new Collection()

foreach(Vertex v in G){

if(v.edgesRemaining == 0)

toProcess.insert(v)

}

topOrder = new List()

while(toProcess is not empty){

u = toProcess.remove()

topOrder.insert(u)

foreach(edge (u,v) leaving u){

v.edgesRemaining--

if(v.edgesRemaining == 0)

toProcess.insert(v)

}

}

Running Time: 𝑂(𝑉 + 𝐸)

Strongly Connected Components

Directed Graph Connectedness

D

B C

A E

D

B C

A E

D

B C

A E

Strongly Connected: Can get from

every vertex to every other and

back!

Weakly Connected: Could get from

every vertex to every other and back,

if you ignore the direction on edges.

Disconnected: Can’t get from every

vertex to every other and back, even if

you ignore the direction on edges.

Strongly Connected Components

SCCs: {A}, {B,C,D,E}

A set of vertices C such that every pair of vertices in C is connected

via some path in both directions, and there is no other vertex which

is connected to every vertex of C in both directions.

Strongly Connected Component

D

B C

A E

Strongly Connected Components Problem

D

C F

B EA K

J

Strongly Connected Components Problem

Given: A directed graph G

Find: The strongly connected components of G

Strongly Connected Components Problem

D

C F

B EA K

J

{A}, {B}, {C,D,E,F}, {J,K}

SCC Algorithm

Ok. How do we make a computer do this?

You could:

-run a BFS from every vertex,

-For each vertex record what other vertices it can get to

-and figure it out from there.

But you can do better. There’s actually an O(|V|+|E|) algorithm!

An Important Subroutine

There’s a second way to traverse a graph.

Depth First Search

-Won’t find you shortest paths

-But does produce interesting information about what vertices you can
reach.

Depth First Search (DFS)
BFS uses a queue to order which vertex we move to next

Gives us a growing “frontier” movement across graph

Can you move in a different pattern? What if you used a stack instead?

dfs(graph)

toVisit.push(first vertex)

mark first vertex as visited

while(toVisit is not empty)

current = toVisit.pop()

for (V : current.neighbors())

if (V is not visited)

toVisit.push(v)

mark v as visited

finished.add(current)

bfs(graph)

toVisit.enqueue(first vertex)

mark first vertex as visited

while(toVisit is not empty)

current = toVisit.dequeue()

for (V : current.neighbors())

if (v is not visited)

toVisit.enqueue(v)

mark v as visited

finished.add(current)

Depth First Search

F

B

C

D

A

E

G

H

I

J

Current node:

Stack:

Finished: A B

A

B EC

D

D FG

BE

H

E CFG

I

H

H

I

GFICD

dfs(graph)

toVisit.push(first vertex)

mark first vertex as visited

while(toVisit is not empty)

current = toVisit.pop()

for (V : current.neighbors())

if (V is not visited)

toVisit.push(v)

mark v as visited

finished.add(current)

DFS

Running time?

-Same as BFS: 𝑂(𝑉 + 𝐸)

You can rewrite DFS to be a recursive method.

Use the call stack as your stack.

No easy trick to do the same with BFS.

SCC Algorithm

Ok. How do we make a computer do this?

You could:

-run a BFS from every vertex,

-For each vertex record what other vertices it can get to

-and figure it out from there.

But you can do better. There’s actually an O(|V|+|E|) algorithm!

SCC Algorithm

I only want you to remember two things about the algorithm:

-It is an application of depth first search.

-It runs in linear time

The problem with running a [B/D]FS from every vertex is you recompute
a lot of information.

The time a vertex is popped off the stack in (recursive) DFS contains a
“smart” ordering to do a second DFS where you don’t need to
recompute that information.

SCC Algorithm

If we run a DFS from A and another one from B, we’ll go through almost the
entire graph twice.

Starting at J or K and moving from “right to left” will let us avoid
recomputation.

Details at end of this slide deck.

For the final, we might ask you to find Strongly Connected Components, but
won’t require you use the algorithm.

D

C F

B EA K

J

Why Find SCCs?

Graphs are useful because they encode relationships between arbitrary
objects.

Let’s build a new graph out of the SCCs! Call it H

-Have a vertex for each of the strongly connected components

-Add an edge from component 1 to component 2 if there is an edge
from a vertex inside 1 to one inside 2.

D

C F

B EA K

J

1

3 4

2

Why Find SCCs?

That’s awful meta. Why?

This new graph summarizes reachability information of the original
graph.

-I can get from A (of G) in 1 to F (of G) in 3 if and only if I can get from 1
to 3 in H.

D

C F

B EA K

J

1

3 4

2

Why Must H Be a DAG?

H is always a DAG (do you see why?).

Takeaways

Finding SCCs lets you collapse your graph to the meta-structure.
If (and only if) your graph is a DAG, you can find a topological sort of
your graph.

Both of these algorithms run in linear time.

Just about everything you could want to do with your graph will take at
least as long.

You should think of these as “almost free” preprocessing of your graph.

-Your other graph algorithms only need to work on

-topologically sorted graphs and

-strongly connected graphs.

A Longer Example

The best way to really see why this is useful is to do a bunch of
examples.

You’d need to take 421 first.
The second best way is to see one example right now...

This problem doesn’t look like it has anything to do with graphs

-no maps

-no roads

-no social media friendships

Nonetheless, a graph representation is the best one.

Example Problem: Final Creation

We have a list of types of problems we might want to put on the final.

-ForkJoin code, Hash tables, B-Trees, Graphs,…

To try to make you all happy, we might ask for your preferences. Each of
you gives us two preferences of the form “I [do/don’t] want a [] problem
on the final” *

We’ll assume you’ll be happy if you get at least one of your two requests.

*This is NOT how I’m making the final.

Given: A list of 2 preferences per student.

Find: A set of questions so every student gets at least one of their

preferences (or accurately report no such question set exists).

Final Creation Problem

Final Creation: Take 1

We have Q kinds of questions and S students.

What if we try every possible combination of questions.

How long does this take? O(2𝑄𝑆)

If we have a lot of questions, that’s really slow.

Final Creation: Take 2
Each student introduces new relationships for data:

Let’s say your preferences are represented by this table:

If we don’t include a B-Trees, can you still be happy?

If we do include a hash tables can you still be happy?

Yes!

BTree

NO

Hash

Yes!

Hash

NO

graph
NO

BTree

Yes!

graph

NO

FJ

Yes!

FJ

Problem YES NO

B-Tree X

Hash

Table

X

Graph

Fork Join

Problem YES NO

B-Tree

Hash

Table

X

Graph X

Fork Join

Final Creation: Take 2

Hey we made a graph!

What do the edges mean?

-We need to avoid an edge that goes TRUE THING FALSE THING

Let’s think about a single SCC of the graph.

NO

C

Yes

A

NO

BYes

B

NO

E

Final Creation: SCCs

The vertices of a given SCC must either be all true or all false.

Algorithm Step 1: Run SCC on the graph. Check that each question-
type-pair are in different SCC.

Now what? Every SCC gets the same value.

-Treat it as a single object!

We want to avoid edges from true things to false things.

-“Trues” seem more useful for us at the end.

Is there some way to start from the end?

YES! Topological Sort

Making the Final

Algorithm:
Make the requirements graph.

Find the SCCs.

If an SCC has including and not including a problem, no final is possible.

Run topological sort on the graph of SCC.

Starting from the end:

- if everything in a component is unassigned, set them to true, and set
their opposites to false.

- Else If one thing in a component is assigned, assign the same value to
the rest of the nodes in the component and the opposite value to their
opposites.

Making The Final

This works!!

The proof is a bit more involved. Just trust me.

How fast is it?

O(Q + S). That’s a HUGE improvement.

Some More Context

The Final Making Problem was a type of “Satisfiability” problem.

We had a bunch of variables (include/exclude this question), and
needed to satisfy everything in a list of requirements.

SAT is a general way to encode lots of hard problems.

Because every requirement was “do at least one of these 2” this was a 2-
SAT instance.

What happens if we change the 2 to a 3?

The problem is very different. We’ll pick up that idea Monday.

Optional Content: Strongly
Connected Components Algorithm

Efficient SCC

We’d like to find all the vertices in our strongly connected component in time
corresponding to the size of the component, not for the whole graph.

We can do that with a DFS (or BFS) as long as we don’t leave our connected component.

If we’re a “sink” component, that’s guaranteed. I.e. a component whose vertex in the meta-
graph has no outgoing edges.

How do we find a sink component? We don’t have a meta-graph yet (we need to find the
components first)

DFS can find a vertex in a source component, i.e. a component whose vertex in the meta-
graph has no incoming edges.
- That vertex is the last one to be popped off the stack in the recursive version of DFS.

So if we run DFS in the reversed graph (where each edge points the opposite direction) we
can find a sink component.

Efficient SCC

So from a DFS in the reversed graph, we can use the order vertices are popped off the stack
to find a sink component (in the original graph).

Run a DFS from that vertex to find the vertices in that component in size of that component
time.

Now we can delete the edges coming into that component.

The last remaining vertex popped off the stack is a sink of the remaining graph, and now a
DFS from them won’t leave the component.

Iterate this process (grab a sink, start DFS, delete edges entering the component).

In total we’ve run two DFSs. (since we never leave our component in the second DFS).

More information, and pseudocode:

https://en.wikipedia.org/wiki/Kosaraju%27s_algorithm

https://en.wikipedia.org/wiki/Kosaraju's_algorithm

