
Minimum Spanning Trees Data Structures and 

Algorithms



Announcements

Talk on technical interviews

-This Friday 1:10 PM

-Gugenheim 220

On “optimization experiments” section of P3 writeup, if you 
find the experiments are taking WAY too long, decrease the 
depth (and tell us you’ve done that)
-I don’t think depth 5 will be a problem for most laptops/the lab 
machines, but we’d rather you get some numbers than none.



Minimum Spanning Trees

It’s the 1920’s. Your friend at the electric company needs to choose 
where to build wires to connect all these cities to the plant. 

A

B

D

E

C

3
6

2

1

4

5

8

9
10

7

She knows how much it would cost to lay electric wires between any 

pair of locations, and wants the cheapest way to make sure electricity 

from the plant to every city.



Minimum Spanning Trees

It’s the 1920’s. Your friend at the electric company needs to choose 
where to build wires to connect all these cities to the plant. 

A

B

D F

E

C

3
6

2

1

4

5

8

9
10

7

She knows how much it would cost to lay electric wires between any 

pair of locations, and wants the cheapest way to make sure 

electricity from the plant to every city.

1950’s

phones to each other.

phone

Everyone can call everyone else.

boss phone



Minimum Spanning Trees

It’s the 1920’s. Your friend at the electric company needs to choose 
where to build wires to connect all these cities to the plant. 

A

B

D

E

C

3
6

2

1

4

5

8

9
10

7

She knows how much it would cost to lay electric wires between any 

pair of locations, and wants the cheapest way to make sure

today ISP

cable

Everyone can reach the server

the Internet.



Minimum Spanning Trees

What do we need? A set of edges such that:

-Every vertex touches at least one of the edges. (the edges span the 
graph)

-The graph on just those edges is connected.

-i.e. the edges are all in the same connected component.

-A connected component is a vertex and everything you can reach 
from it.

-The minimum weight set of edges that meet those conditions

Claim: The set of edges we pick never has a cycle. Why?



Aside: Trees 

On graphs our tees:

-Don’t need a root (the vertices aren’t ordered, and we can start BFS 
from anywhere)

-Varying numbers of children neighbors

-Connected and no cycles 

An undirected, connected acyclic graph.

Tree (when talking about undirected graphs)



MST Problem

What do we need? A set of edges such that:
-Every vertex touches at least one of the edges. (the edges span the graph)

-The graph on just those edges is connected.

-The minimum weight set of edges that meet those conditions.

Our goal is a tree!

We’ll go through two different algorithms for this problem today.

Given: an undirected, weighted graph G

Find: A minimum-weight set of edges such that you can get 

from any vertex of G to any other on only those edges.

Minimum Spanning Tree Problem



Example

Try to find an MST of this graph:

A

B

D F

E

C

3
6

2

1

4

5

8

9
10

7



Prim’s Algorithm

Algorithm idea: choose an arbitrary starting point. Add a new edge that:

-Will let you reach more vertices.

-Is as light as possible

We’d like each not-yet-connected vertex to be able to tell us the lightest 
edge we could add to connect it. 



Code
PrimMST(Graph G) 

initialize distances to ∞

mark source as distance 0

mark all vertices unprocessed

foreach(edge (source, v) )

v.dist = weight(source,v)

v.bestEdge = (source,v)

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

add u.bestEdge to spanning tree

foreach(edge (u,v) leaving u){

if(weight(u,v) < v.dist AND v not processed){

v.dist = weight(u,v)

v.bestEdge = (u,v)

}

}

mark u as processed

}



Try it Out

Vertex Dist. Best Edge Processed

A

B

C

D

E

F

G

A

B

D
F

E

C

50
6

3

4

7

2

8

9
5

7

G

2
PrimMST(Graph G) 

initialize distances to ∞

mark source as distance 0

mark all vertices unprocessed

foreach(edge (source, v) )

v.dist = weight(source,v)

v.bestEdge = (source,v)

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

add u.bestEdge to spanning tree

foreach(edge (u,v) leaving u){

if(weight(u,v) < v.dist AND v not 

processed){

v.dist = weight(u,v)

v.bestEdge = (u,v)

}

}

mark u as processed

}



Try it Out

Vertex Dist. Best Edge Processed

A -- -- Yes

B 2 (A,B) Yes

C 4 (A,C) Yes

D 7 2 (A,D)(C,D) Yes

E 6 5 (B,E)(C,E) Yes

F 3 (B,F) Yes

G 50 (B,G) Yes

A

B

D
F

E

C

50
6

3

4

7

2

8

9
5

7

G

2
PrimMST(Graph G) 

initialize distances to ∞

mark source as distance 0

mark all vertices unprocessed

foreach(edge (source, v) )

v.dist = weight(source,v)

v.bestEdge = (source,v)

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

add u.bestEdge to spanning tree

foreach(edge (u,v) leaving u){

if(weight(u,v) < v.dist AND v not 

processed){

v.dist = weight(u,v)

v.bestEdge = (u,v)

}

}

mark u as processed

}



Does This Algorithm Always Work?

Prim’s Algorithm is a greedy algorithm. Once it decides to include an 
edge in the MST it never reconsiders its decision. 

Greedy algorithms rarely work. 

There are special properties of MSTs that allow greedy algorithms to 
find them.

In fact MSTs are so magical that there’s more than one greedy algorithm 
that works.



Why do all of these MST Algorithms Work?

MSTs satisfy two very useful properties:

Cycle Property: The heaviest edge along a cycle is NEVER part of an 
MST.

Cut Property: Split the vertices of the graph any way you want into two 
sets A and B. The lightest edge with one endpoint in A and the other in 
B is ALWAYS part of an MST. 

Whenever you add an edge to a tree you create exactly one cycle, you 
can then remove any edge from that cycle and get another tree out. 

This observation, combined with the cycle and cut properties form the 
basis of all of the greedy algorithms for MSTs.



Does This Algorithm Always Work?

Prim’s Algorithm is a greedy algorithm. Once it decides to include an 
edge in the MST it never reconsiders its decision. 

Greedy algorithms rarely work. 

There are special properties of MSTs that allow greedy algorithms to 
find them.

In fact MSTs are so magical that there’s more than one greedy algorithm 
that works.



A different Approach

Prim’s Algorithm started from a single vertex and reached more and 
more other vertices.

Prim’s thinks vertex by vertex (add the closest vertex to the currently 
reachable set).

What if you think edge by edge instead?

Start from the lightest edge; add it if it connects new things to each 
other (don’t add it if it would create a cycle)

This is Kruskal’s Algorithm.



Kruskal’s Algorithm

KruskalMST(Graph G) 

initialize each vertex to be a connected 

component

sort the edges by weight

foreach(edge (u, v) in sorted order){

if(u and v are in different components){

add (u,v) to the MST

Update u and v to be in the same component

}

}



Try It Out

A

B

D F

E

C

3 6

2
1

4

5

8

9
10

7

KruskalMST(Graph G) 

initialize each vertex to be a connected component

sort the edges by weight

foreach(edge (u, v) in sorted order){

if(u and v are in different components){

add (u,v) to the MST

Update u and v to be in the same component

}

}
Edge Include? Reason

(A,C)

(C,E)

(A,B)

(A,D)

(C,D)

Edge (cont.) Inc? Reason

(B,F)

(D,E)

(D,F)

(E,F)

(C,F)



Try It Out

A

B

D F

E

C

3 6

2
1

4

5

8

9
10

7

KruskalMST(Graph G) 

initialize each vertex to be a connected component

sort the edges by weight

foreach(edge (u, v) in sorted order){

if(u and v are in different components){

add (u,v) to the MST

Update u and v to be in the same component

}

}
Edge Include? Reason

(A,C) Yes

(C,E) Yes

(A,B) Yes

(A,D) Yes

(C,D) No Cycle A,C,D,A

Edge (cont.) Inc? Reason

(B,F) Yes

(D,E) No Cycle A,C,E,D,A

(D,F) No Cycle A,D,F,B,A

(E,F) No Cycle A,C,E,F,D,A

(C,F) No Cycle C,A,B,F,C



Kruskal’s Algorithm: Running Time

KruskalMST(Graph G) 

initialize each vertex to be a connected component

sort the edges by weight

foreach(edge (u, v) in sorted order){

if(u and v are in different components){

add (u,v) to the MST

Update u and v to be in the same component

}

}



Kruskal’s Algorithm: Running Time

Running a new BFS in the partial MST, at every step seems inefficient.

Do we have an ADT that will work here?

Not yet…



Union-Find Crash Course

aka Disjoint Sets

Represents…well…disjoint sets.

Union-Find ADT

makeSet(x) – creates a new set where the only 

member (and the representative) is x.

state

behavior

Set of Sets

- Disjoint: No element appears in multiple sets

- No required order

- Each set has representative

findSet(x) – looks up the set containing 

element x, returns representative of that set

union(x, y) – combines set containing x and 

set containing y. Picks new representative.



Union-Find Running Time

We don’t have time to talk about an implementation.

Here’s the important thing:

Can do these operations in:

Operation Amortized Non-amortized

MakeSet() Θ(1) Θ(1)

Union() 𝑂(log∗ 𝑛) 𝑂(log 𝑛)

Find() 𝑂(log∗ 𝑛) 𝑂(log 𝑛)



log∗ 𝑛

log∗ 𝑛

the number of times you need to apply log() to get a number at most 1. 

E.g. log∗(16) = 3

log 16 = 4 log 4 = 2 log 2 = 1.

log∗ 𝑛 grows ridiculously slowly. 

log∗ 1080 = 5.

For all practical purposes these operations are constant time.



Using Union-Find

Have each disjoint set represent a connected component 
-A connected component is a “piece” of a (disconnected) undirected graph

-i.e. a vertex, and everything you can reach from that vertex.

When you add an edge, you union those connected components.



Try it Out

KruskalMST(Graph G) 

initialize each vertex to be a connected component

sort the edges by weight

foreach(edge (u, v) in sorted order){

if(find(u) != find(v)){

add (u,v) to the MST

Union(u,v) }

}
A

B

D
F

E

C

50
6

3

4

7

2

8

9
5

7

G

2



Try it Out

A

B

D
F

E

C

50
6

3

4

7

2

8

9
5

7

G

2

Edge Include? Reason

(A,B) Yes

(C,D) Yes

(B,F) Yes

(A,C) Yes

(C,E) Yes

(B,E) No Cycle A,C,D,B,A

(A,D) No Cycle A,D,C

(D,E) No Cycle C,D,E

(D,F) No Cycle A,B,F,D,C,A

(E,F) No Cycle E,F,B,A,C,E

(B,G) Yes



Some Extra Comments

Prim was the employee at Bell Labs in the 1950’s

The mathematician in the 1920’s was Boruvka

-He had a different also greedy algorithm for MSTs.

-Boruvka’s algorithm is trickier to implement, but is useful in some 
cases.

-In particular it’s the basis for fast parallel MST algorithms.

There’s at least a fourth greedy algorithm for MSTs…

If all the edge weights are distinct, then the MST is unique.

If some edge weights are equal, there may be multiple spanning trees. 
Prim’s/Kruskal’s are only guaranteed to find you one of them.



Aside: A Graph of Trees

A tree is an undirected, connected, and acyclic graph.

How would we describe the graph Kruskal’s builds. 

It’s not a tree until the end.

It’s a forest!

A forest is any undirected and acyclic graph 



EVERY TREE IS A FOREST.


