
Shortest Paths Data Structures and

Parallelism

Announcements

Parallelism exercises due today

“One” more exercise out this afternoon.

We’ve written two exercises 12A and 12B.

You can either

1. Submit only one of A and B (whichever one you prefer)

2. Or use a token and do both (you get the higher of the two scores).

Because we’re at the end of the quarter, you won’t be able to use a
token to redo exercise 12.

Both are useful for studying for the final, you should at least look at
both.

Announcements

P3 checkpoint 2 Wednesday.

Using tokens to redo exercises:
Redone exercises will be due next Tuesday (Aug 14) at 11:59 PM.

We’ll have a form to tell us
-How many tokens you’re using for P3 late days and

-Which exercises you’re redoing.

Have to decide by Tuesday Aug. 14.

Redone parallelism exercises will be submitted on gitlab.

Others submitted on gradescope.

Warm Up
Run Breadth First Search on this graph starting from s.

What order are vertices placed on the queue?

When processing a vertex insert neighbors in alphabetical order.

In a directed graph, BFS only follows an edge in the direction it points.

s t

v

u x

w

y

bfs(graph)

toVisit.enqueue(first vertex)

mark first vertex as visited

while(toVisit is not empty)

current = toVisit.dequeue()

for (V : current.outneighbors())

if (v is not visited)

toVisit.enqueue(v)

mark v as visited

finished.add(current)

Warm Up
Run Breadth First Search on this graph starting from s.

What order are vertices placed on the queue?

When processing a vertex insert neighbors in alphabetical order.

In a directed graph, BFS only follows an edge in the direction it points.

s t

v

u x

w

y

bfs(graph)

toVisit.enqueue(first vertex)

mark first vertex as visited

while(toVisit is not empty)

current = toVisit.dequeue()

for (V : current.outneighbors())

if (v is not visited)

toVisit.enqueue(v)

mark v as visited

finished.add(current)

Correct order: s,u,v,y,x,w,t

Shortest Paths

How does Google Maps figure out this is the fastest way to get from
Kane Hall to CSE?

Representing Maps as Graphs

How do we represent a map as a graph? What are the vertices and
edges?

Representing Maps as Graphs

K

R

D

P

H
S

4

1 2

2

4

3

5

Shortest Paths

s w

y

u

t

v x

1 4

1

5

4
2 5

6

3

The length of a path is the sum of the edge weights on that path.

Given a directed graph and vertices s and t

Find: the shortest path from s to t.

Shortest Path Problem

Shortest Paths

s w

y

u

t

v x

1 4

1

5

4
2 5

6

3

The length of a path is the sum of the edge weights on that path.

Given a directed graph and vertices s and t

Find: the shortest path from s to t.

Shortest Path Problem

Unweighted graphs

Let’s start with a simpler version: the edges are all the same weight

If the graph is unweighted, how do we find a shortest paths?

Unweighted Graphs

If the graph is unweighted, how do we find a shortest paths?

s t

v

u

y

w

x

What’s the shortest path from s to s?
Well….we’re already there.

What’s the shortest path from s to u or v?
Just go on the edge from s

From s to w,x, or y?
Can’t get there directly from s, for length 2 path, have to go through u or v.

Unweighted Graphs: Key Idea
To find the set of vertices at distance k, just find the set of vertices at
distance k-1, and check for outgoing edge to an undiscovered vertex.

Do we already know an algorithm that does something like that?

Yes! BFS!
bfsShortestPaths(graph G, vertex source)

toVisit.enqueue(source)

source.dist = 0

mark source as visited

while(toVisit is not empty){

current = toVisit.dequeue()

for (v : current.outNeighbors()){

if (v is not yet visited){

v.distance = current.distance + 1

v.predecessor = current

toVisit.enqueue(v)

mark v as visited

}

}

}

Unweighted Graphs

Use BFS to find shortest paths in this graph.

bfsShortestPaths(graph G, vertex source)

toVisit.enqueue(source)

source.dist = 0

mark source as visited

while(toVisit is not empty){

current = toVisit.dequeue()

for (v : current.outNeighbors()){

if (v is not yet visited){

v.distance = current.distance + 1

v.predecessor = current

toVisit.enqueue(v)

mark v as visited

}

}

}

s t

v

u

y

w

x

Unweighted Graphs

s t

v

u

y

w

x

1

1

2

2

2

3

bfsShortestPaths(graph G, vertex source)

toVisit.enqueue(source)

source.dist = 0

mark source as visited

while(toVisit is not empty){

current = toVisit.dequeue()

for (v : current.outNeighbors()){

if (v is not yet visited){

v.distance = current.distance + 1

v.predecessor = current

toVisit.enqueue(v)

mark v as visited

}

}

}

Use BFS to find shortest paths in this graph.

What about the target vertex?

BFS didn’t mention a target vertex…

It actually finds the shortest path from s to every other vertex.

If you know your target, you can stop the algorithm early, when the

target is removed from the queue.

Given a directed graph and vertices s and t

Find: the shortest path from s to t.

Shortest Path Problem

Weighted Graphs

Each edge should represent the “time” or “distance” from one vertex to
another.

Sometimes those aren’t uniform, so we put a weight on each edge to
record that number.

The length (or “weight” or “cost”) of a path in a weighted graph is the
sum of the weights along that path.

Negative Edge Weights

What’s the shortest way to get from s to t?

s t

w

u

v

3

2
-5

2
-2

s, u,v,w, u,v,w, u,v,w, …

There is no shortest way. You can always go around u,v,w once more.

If there’s a negative weight cycle shortest paths are undefined.

Negative Edge Weights

If there are negative edge weights, but no negative weight cycle,
shortest paths are still defined.

For today we’ll assume all of the weights are positive
-For GoogleMaps that definitely makes sense.

-Sometimes negative weights make sense.

-Today’s algorithm doesn’t work for those graphs

-There are other algorithms that do work (ask Robbie later)

In section, you’ll see why negative edge weights might be useful.

Weighted Graphs: Take 1

BFS works if the graph is unweighted.

Maybe it just works for weighted graphs too?

s tv

w

u
1

20

1

1 1

x
1

Weighted Graphs: Take 1

BFS works if the graph is unweighted.

Maybe it just works for weighted graphs too?

s tv

w

u

What went wrong?

When we found a shorter path from s to u,

we needed to update the distance to v

but BFS doesn’t do that.

1

20

1

1 10

∞

∞ ∞ ∞

x
∞11

20 21

2

223

Weighted Graphs: Take 2

You already do this all the time.

In P1, you reduced implementing a hashset to implementing a hashmap.

They appeared in exercise 7.

Any time you use a library, you’re reducing your problem to the one the
library solves.

Can we reduce finding shortest paths on weighted graphs to finding
them on unweighted graphs?

Using an algorithm for Problem B to solve Problem A.

Reduction (informally)

Weighted Graphs Take 2

Given a weighted graph, how do we turn it into an unweighted one
without messing up the path lengths?

Weighted Graphs: A Reduction

s

u

v

t2

2

2

1

1

s

u

v

t

s

u

v
t 2

s

u

v
t2

2

2

1

1

2

Transform Input

Unweighted Shortest Paths

Transform Output

Weighted Graphs: A Reduction

What is the running time of
our reduction on this graph?

O(|V|+|E|) of the modified
graph, which is…slow.

Does our reduction even work
on this graph?

Ummm….

Tl;dr: If your graph’s weights are all small positive integers, this reduction

might work great.

Otherwise we probably need a new idea.

s

u

v
t200

5000

5000

150

1

s

u

v
t𝜋

0.5

5000

3

1

Weighted Graphs: Take 3

So we can’t just do a reduction.

Instead figure out why BFS worked in the unweighted case,
try to make the same thing happen in the weighted case.

How did we avoid this problem:

s
tv

w

u

1

20

1

1 10 3

x

11

21

2

22

Weighted Graphs: Take 3

In BFS When we used a vertex u to update shortest paths we already
knew the exact shortest path to u.

So we never ran into the update problem

If we process the vertices in order of distance from s, we have a chance.

Weighted Graphs: Take 3

Goal: Process the vertices in order of distance from s

Idea:

Have a set of vertices that are “known”

-(we know at least one path from s to them).

Record an estimated distance

-(the best way we know to get to each vertex).

If we process only the vertex closest in estimated distance, we won’t
ever find a shorter path to a processed vertex.
-This statement is the key to proving correctness.

-It’s nice if you want to practice induction/understand the algorithm better.

Dijkstra’s Algorithm

s tv

w

u
1

20

1

1 1

x
1

Vertex Distance Predecessor Processed

s

w

x

u

v

t

Dijkstra(Graph G, Vertex source)

initialize distances to ∞

mark source as distance 0

mark all vertices unprocessed

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

foreach(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){

v.dist = u.dist+weight(u,v)

v.predecessor = u

}

}

mark u as processed

}

Dijkstra’s Algorithm

Dijkstra(Graph G, Vertex source)

initialize distances to ∞

mark source as distance 0

mark all vertices unprocessed

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

foreach(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){

v.dist = u.dist+weight(u,v)

v.predecessor = u

}

}

mark u as processed

}
s tv

w

u
1

20

1

1 1

x
1

Vertex Distance Predecessor Processed

s 0 -- Yes

w 1 s Yes

x 2 w Yes

u 20 3 s x Yes

v 4 u Yes

t 5 v Yes

Implementation Details

One of those lines of pseudocode was a little sketchy

> let u be the closest unprocessed vertex

What ADT have we talked about that might work here?

Minimum Priority Queues!

Making Minimum Priority Queues Work

They won’t quite work “out of the box”.

We don’t have an update priority
method. Can we add one?

-Percolate up!

To percolate u’s entry in the heap up
we’ll have to get to it.

-Each vertex need pointer to where it
appears in the priority queue

-I’m going to ignore this point for the
rest of the lecture.

Min Priority Queue ADT

removeMin() – returns and removes

element with the smallest priority

state

behavior

Set of comparable values

- Ordered by “priority”

peek() – find the element with the

smallest priority

insert(value) – add new element to

collection

DecreaseKey(e, p) – decreases

priority of element e down to p.

Running Time Analysis
Dijkstra(Graph G, Vertex source)

initialize distances to ∞, source.dist to 0

mark all vertices unprocessed

initialize MPQ as a Min Priority Queue

add source at priority 0

while(MPQ is not empty){

u = MPQ.removeMin()

foreach(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){

if(v.dist == ∞) //if v not in MPQ

MPQ.insert(v, u.dist+weight(u,v))

else

MPQ.decreaseKey(v, u.dist+weight(u,v))

v.dist = u.dist+weight(u,v)

v.predecessor = u

}

}

mark u as processed

}

Optional Content
More Graph Applications

Another Application of Shortest Paths

Shortest path algorithms are obviously useful for GoogleMaps.

The wonderful thing about graphs is they can encode arbitrary relationships among
objects.

I don’t care if you remember all the details.

I just want you to see that these algorithms have non-obvious applications.

Another Application of Shortest Paths

Given: a directed graph G, where each edge weight is the probability

of successfully transmitting a message across that edge

Find: the path from s to t with maximum probability of message

transmission

Maximum Probability Path

I have a message I need to get from point s to point t.

But the connections are unreliable.

What path should I send the message along so it has the best chance of arriving?

s

u

v

t0.6

0.8

0.97

0.7

0.2

Another Application of Shortest Paths

Let each edge’s weight be the probability a message is sent successfully across the edge.

What’s the probability we get our message all the way across a path?
- It’s the product of the edge weights.

We only know how to handle sums of edge weights.

Is there a way to turn products into sums?

log 𝑎𝑏 = log 𝑎 + log 𝑏

s

u

v

t0.6

0.8

0.97

0.7

0.2

Another Application of Shortest Paths

We’ve still got two problems.

1. When we take logs, our edge weights become negative.

2. We want the maximum probability of success, but that’s the longest path not the shortest
one.

Multiplying all edge weights by negative one fixes both problems at once!

We reduced the maximum probability path problem to a shortest path problem by taking
− log() of each edge weight.

s

u

v

t-0.74

-0.32

-0.04

-0.51

-2.32

Maximum Probability Path Reduction

s

u

v

t0.74

0.32

0.04

0.51

2.32

s

u

v

t0.6

0.8

0.97

0.7

0.2

s

u

v

t0.6

0.8

0.97

0.7

0.2

s

u

v

t0.74

0.32

0.04

0.51

2.32

Weighted Shortest Paths

Transform Input

Transform Output

