
Graphs Data Structures and

Parallelism

Announcements

P3 checkpoint 1 today

Checkpoint 2 on Wednesday

Parallelism exercises are due Monday.

We’ll announce details of using tokens to redo exercises over the
weekend.

ADTs so far

We’ve seen:

Queues and Stacks
-Our data points have some order we’re maintaining

Priority Queues
-Our data had some priority we needed to keep track of.

Dictionaries
-Our data points came as (key, value) pairs.

Graphs

Graphs are too versatile to think of them as only an ADT!

Graphs

Represent data points and the relationships between them.

That’s vague.

Formally:

A graph is a pair: G = (V,E)

V: set of vertices (aka nodes)

E: set of edges
-Each edge is a pair of vertices.

A

B

C

D

{𝐴, 𝐵, 𝐶, 𝐷}

{(𝐴, 𝐵), (𝐵, 𝐶), (𝐵, 𝐷), (𝐶, 𝐷)}

Making Graphs

If your problem has data and relationships, you might want to represent
it as a graph

How do you choose a representation?

Usually:

Think about what your “fundamental” objects are
-Those become your vertices.

Then think about how they’re related
-Those become your edges.

Some examples

For each of the following think about what you should choose for
vertices and edges.

The internet.

Facebook friendships

Input data for the “6 degrees of Kevin Bacon” game

Course Prerequisites

Some examples

For each of the following think about what you should choose for
vertices and edges.

The internet.
-Vertices: webpages. Edges from a to b if a has a hyperlink to b.

Facebook friendships
-Vertices: people. Edges: if two people are friends

Input data for the “6 Degrees of Kevin Bacon” game
-Vertices: actors. Edges: if two people appeared in the same movie

-Or: Vertices for actors and movies, edge from actors to movies they appeared in.

Course Prerequisites
-Vertices: courses. Edge: from a to b if a is a prereq for b.

More Graphs

We’ve already used graphs to represent things in this course:

A LOT

Solving Recurrences III

CSE 373 SU 18 - ROBBIE WEBER 10

𝑐n2

𝑐
n

16

2

𝑐
n

16

2

𝑐
n

16

2

𝑐
n

16

2

𝑐
n

16

2

𝑐
n

16

2

𝑐
n

16

2

𝑐
n

16

2

𝑐
n

16

2

… …… … …… … …… … …… … …… … …… … …… … …… … ……

5 5

Answer the following

questions:

1. What is input size on

level 𝑖?
2. Number of nodes at

level 𝑖?
3. Work done at

recursive level 𝑖?
4. Last level of tree?

5. Work done at base

case?

6. What is sum over all

levels?

𝑇 𝑛 =
5 𝑤ℎ𝑒𝑛 𝑛 ≤ 4

3𝑇
𝑛

4
+ 𝑐𝑛2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑐
n

4

2

𝑐
n

4

2

𝑐
n

4

2
c

𝑛

4

2

c
𝑛

4

2

𝑐
𝑛

4

2

𝑐𝑛2

BuildHeap: Only One Possibility

But StartBottom() seems to work.

Does it always work?

CSE 332 - SU 18 ROBBIE WEBER 11

3

31

78

12 4

6

7

6

31

8

1

7

7

2

Are These AVL Trees?

6

42

73

9

8 105

4

52

73

9

8 10

6

Deletion – merging nodes

32

3 1

12 3

18 2

30 4

32 5

36 6

15

18

Delete 14. Merge up the tree.

Update “signpost” to be smallest key in its right subtree.

3 1

12 3

15 7

18 2

30 4

32 5

36 6

3218

3 1

12 3

15 7

a<b<c; a<c<b; b<a<c;

b<c<a; c<b<a; c<a<b

a<b<c; a<c<b; c<a<b b<a<c; b<c<a; c<b<a

a<b<c a<c<b; c<a<b b<c<a; c<b<ab<a<c

a<c<b c<a<b b<c<a c<b<a

Ask: is

a < b?

Ask: is

b<c?

Ask: is

a<c?

Ask: is

a<c?

Ask: is

b<c?

Useful Diagram

…
…

…

One node per

O(1) operation

Edge from 𝑢 to 𝑣
if 𝑣 waits for 𝑢.
I.e. 𝑣 can’t start

until 𝑢 finishes.

Question: why are

there no cycles in

this graph?

6 4 16 10 16 14 2 8

Sum: 76

Left sum: 0

Sum: 36

Left Sum: 0

S: 6

L: 0

Sum: 10

Left Sum: 0

Sum: 40

Left Sum:0+36=36

Sum: 26

Left Sum: 10
Sum: 30

Left Sum: 36

Sum: 10

Left Sum: 66

S: 4

L: 6

S: 16

L: 10
S: 10

L: 26

S: 16

L: 36

S: 14

L: 52

S: 2

L: 66

S: 8

L: 68

Your right child has a left sum of:

Your left sum + its sibling’s sum.

Your left child gets your

left sum.

Try by hand

5 7 23 33 2 3 14 15

X Y

A B C D

? MAX

MAX

MIN

More Graphs

EVERYTHING was graphs.

The whole time.

They don’t just show up in data structures.

311: NFAs/DFAs and relations
Compilers: Use graphs to figure out valid compilation orders.

Networking: Building a graph
-To the point that some CS people call graphs “networks”

Circuits: represented as graphs

Some examples

For each of the following think about what you should choose for
vertices and edges.

The internet.
-Vertices: webpages. Edges from a to b if a has a hyperlink to b.

Facebook friendships
-Vertices: people. Edges: if two people are friends

Input data for the “6 Degrees of Kevin Bacon” game
-Vertices: actors. Edges: if two people appeared in the same movie

-Or: Vertices for actors and movies, edge from actors to movies they appeared in.

Course Prerequisites
-Vertices: courses. Edge: from a to b if a is a prereq for b.

Edges have

direction

Edges don’t

have direction

Edges have

direction

Graph Terms

Graphs can be directed or undirected.

Caitlin

Robbie

Alon

Caitlin

Robbie

Degree: 1

Degree: 0

Outdegree: 2

Indegree: 2

This graph is

disconnected.

Following on twitter.

Friendships on Facebook.

Graph Terms

Walk – A sequence of adjacent vertices. Each connected to next by an edge.

(Directed) Walk–must follow the direction of the edges

Length – The number of edges in a walk

- (A,B,C,D) has length 3.

A B C D

A B C D

A,B,C,D is a walk.

So is A,B,A

A,B,C,D,B is a directed walk.

A,B,A is not.

Graph Terms

Path – A walk that doesn’t repeat a vertex. A,B,C,D is a path. A,B,A is not.

Cycle – path with an extra edge from last vertex back to first.

Be careful looking at other sources.

Some people call our “walks” “paths” and our “paths” “simple paths”

Use the definitions on these slides.

A B C D

A B C D

Representing and Using Graphs

Adjacency Matrix

0 1 2 3 4 5 6

0 0 1 1 0 0 0 0

1 1 0 0 1 0 0 0

2 1 0 0 1 0 0 0

3 0 1 1 0 0 1 0

4 0 0 0 0 0 1 0

5 0 0 0 1 1 0 0

6 0 0 0 0 0 0 0

6
2 3

4

5

0 1

In an adjacency matrix a[u][v] is 1 if

there is an edge (u,v), and 0

otherwise.

Time Complexity (|V| = n, |E| = m):

Add Edge:

Remove Edge:

Check edge exists from (u,v):

Get neighbors of u (out):

Get neighbors of u (in):

Space Complexity:

O(1)

O(1)

O(1)

O(n)

O(n)

𝑂(𝑛2)

Adjacency List

0

1

2

3

4

5

6

6
2 3

4

5
0 1

1 → 2

0 → 3

0 → 3

3 → 4

5

1 → 2 → 5

An array where the u’th element contains a list of

neighbors of u.

Directed graphs: put the out neighbors (a[u] has v

for all (u,v) in E)

Time Complexity (|V| = n, |E| = m):

Add Edge:

Remove Edge:

Check edge exists from (u,v):

Get neighbors of u (out):

Get neighbors of u (in):

Space Complexity:

O(1)
O(min(n, m))

O(min(n, m))

O(n)

O(n + m)

O(n + m)

Suppose we use a

linked list for each

node.

Adjacency List

0

1

2

3

4

5

6

6
2 3

4

5
0 1

1 → 2

0 → 3

0 → 3

3 → 4

5

1 → 2 → 5

An array where the u’th element contains a list of

neighbors of u.

Directed graphs: put the out neighbors (a[u] has v

for all (u,v) in E)

Time Complexity (|V| = n, |E| = m):

Add Edge:

Remove Edge:

Check edge exists from (u,v):

Get neighbors of u (out):

Get neighbors of u (in):

Space Complexity:

O(1)
O(1)

O(1)

O(n)

O(n)

O(n + m)

Switch the linked lists to

hash tables, and do

average case analysis.

Breadth First Search

Current node:

Queue:

Finished:

F

B

C

D

A

E

G

H

I

J

A B

A

B E C

D

D F G

BDE

H

E

C

C

F

F

G

G

I

G

H

HI

I

search(graph)

toVisit.enqueue(first vertex)

mark first vertex as visited

while(toVisit is not empty)

current = toVisit.dequeue()

for (V : current.neighbors())

if (v is not visited)

toVisit.enqueue(v)

mark v as visited

finished.add(current)

Breadth First Search

F

B

C

D

A

E

G

H

I

J

search(graph)

toVisit.enqueue(first vertex)

mark first vertex as visited

while(toVisit is not empty)

current = toVisit.dequeue()

for (V : current.neighbors())

if (v is not visited)

toVisit.enqueue(v)

mark v as visited

finished.add(current)

What’s the running time of this algorithm?

We visit each vertex at most twice, and each edge at most once: 𝑂(|𝑉| + |𝐸|)

Depth First Search (DFS)
BFS uses a queue to order which vertex we move to next

Gives us a growing “frontier” movement across graph

Can you move in a different pattern? What if you used a stack instead?

dfs(graph)

toVisit.push(first vertex)

mark first vertex as visited

while(toVisit is not empty)

current = toVisit.pop()

for (V : current.neighbors())

if (V is not visited)

toVisit.push(v)

mark v as visited

finished.add(current)

bfs(graph)

toVisit.enqueue(first vertex)

mark first vertex as visited

while(toVisit is not empty)

current = toVisit.dequeue()

for (V : current.neighbors())

if (v is not visited)

toVisit.enqueue(v)

mark v as visited

finished.add(current)

Depth First Search

F

B

C

D

A

E

G

H

I

J

Current node:

Stack:

Finished: A B

A

B EC

D

D FG

BE

H

E CFG

I

H

H

I

GFICD

dfs(graph)

toVisit.push(first vertex)

mark first vertex as visited

while(toVisit is not empty)

current = toVisit.pop()

for (V : current.neighbors())

if (V is not visited)

toVisit.push(v)

mark v as visited

finished.add(current)

DFS

Running time?

-Same as BFS: 𝑂(𝑉 + 𝐸)

You can rewrite DFS to be a recursive method.

Use the call stack as your stack.

No easy trick to do the same with BFS.

Next week: Using BFS, DFS and other algorithms to solve problems!

