5
A\)
f
p &
' | o | - oo
: “Y £
. ‘agls S G
- ‘ T Nty \ o
e L Y™
AT . . -
' N
y ¥
a
n\ -."
| - 5
' l -, -
' . ". : :
‘ ; \“ ;r
: . - A 4
» ’ » » (‘
- -
‘ b e ad
- -m- " " '-' & :
. - A
- ‘ ») e
' ‘e' .'l - '
.) » piet = A P"

L

“—

- i

Vav I‘-s'n!

. :".’

G ra h S Data Structures and
p Parallelism

Announcements

P3 checkpoint 1 today
Checkpoint 2 on Wednesday

Parallelism exercises are due Monday.

We'll announce details of using tokens to redo exercises over the
weekend.

ADTs so far

We've seen:

Queues and Stacks
Our data points have some order we're maintaining

Priority Queues
Our data had some priority we needed to keep track of.

Dictionaries
Our data points came as (key, value) pairs.

Graphs

€& > C | & Secure | https:/fenwikipedia.org/wiki/Graph_(abstract_data type)

The Free Encyclopedia

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Interaction

Help

About Wikipedia
Community portal
Recent changes
Contact page

Graphs are too

& Notlogged in Talk Contributions Create account Log in

Article Talk Search Wikipedia Q

Graph (ssraesdinnEppes

From Wikipedia, the free encyclopedia

Read Edit View history

In computer science, a graph is an abstract data type that is meant to implement the undirected
graph and directed graph concepts from mathematics, specifically the field of graph theory.

A graph data structure consists of a finite (and possibly mutable) set of vertices or nodes or
points, together with a set of unordered pairs of these vertices for an undirected graph or a set of
ordered pairs for a directed graph. These pairs are known as edges, arcs, or lines for an
undirected graph and as arrows, directed edges, directed arcs, or directed lines for a directed

A graph with three &
graph. The vertices may be part of the graph structure, or may be external entities represented by

vertices and three

integer indices or references. edges.

A graph data structure may also associate to each edge some edge value, such as a symbolic

label or a numeric attribute (cost, capacity, length, etc.).

Contents [hide]

1 Operations

versatile to think of them as only an ADT!

Q% @

Graphs

Represent data points and the relationships between them.

Formally: G G
A graph is a pair: G = (V,E) G

V: set of vertices (aka nodes) (4 B, ¢, D}

fsetofedges {(4,B),(B,C),(B,D),(C,D)}
Each edge is a pair of vertices.

That's vague.

Making Graphs

If your problem has data and relationships, you might want to represent
it as a graph

How do you choose a representation?

Usually:

Think about what your “fundamental” objects are
Those become your vertices.

Then think about how they're related
Those become your edges.

Some examples

For each of the following think about what you should choose for
vertices and edges.

The internet.

Facebook friendships

Input data for the "6 degrees of Kevin Bacon” game

Course Prerequisites

Some examples

For each of the following think about what you should choose for
vertices and edges.
The internet.

Vertices: webpages. Edges from a to b if a has a hyperlink to b.

Facebook friendships
Vertices: people. Edges: if two people are friends

Input data for the “6 Degrees of Kevin Bacon” game
Vertices: actors. Edges: if two people appeared in the same movie
Or: Vertices for actors and movies, edge from actors to movies they appeared in.

Course Prerequisites
Vertices: courses. Edge: from ato b if a is a prereq for b.

More Graphs

We've already used graphs to represent things in this course:

A LOT

Solving Recurrences III

T(n)

—_—

—

5whenn <4

3T (g) + cn? otherwise

~—

Answer the following

questions:

1. What is input size on
level i?

2. Number of nodes at
level i?

3. Work done at

recursive level i?
4. Last level of tree?

5. Work done at base
case”?
6. What is sum over all

levels?

CSE 373 SU 18 - ROBBIE WEBER 10

BuildHeap: Only One Possibility

But StartBottom () seems to work.
D

Does it always

CSE 332 - SU 18 ROBBIE WEBER 11

Are These AVL Trees?

Deletion — merging nodes

Delete 14. Merge up the tree.
Update “signpost” to be smallest key i

rIt su

€.

|

12

15

18

32

30

36

a<b<c a<c<b; b<a<c
b<c<a; c<b<a; c<a<b
Ask: is

a < b? ‘wi=!5‘ °

a<b<c a<c<b; c<a<b ‘ D<a<c b<c<a; c<b<a
Ask:is N

a<c?

b<c<a; c<b<a

Useful Diagram

dge fromu to v
Wgts for u.
|.eWw can't start
until u finishes.

One node per
O(1) operation

Question: why are
there no cycles in
this graph?

Your left child gets your
left sum.

Sum: 76
Left sum: 0

Sum: 36
Left Sum: O

Your right child has a left sum of:
Your left sum + its sibling’s sum.

Sur. - 40
Left L ' m:0+36=36

Sum: 10 Sum: 26 Sune 30 Sum: 10
Left Sum: O Left S .10 L tt Sum: 36 Left Sum: 66

o o

o S: 10 S: 16 S: 14

L: 26 L: 36 Y

6 4 16 10 16 14 2 8

Try by hand

More Graphs

EVERYTHING was graphs.
The whole time.

They don't just show up in data structures.

311: NFAs/DFAs and relations
Compilers: Use graphs to figure out valid compilation orders.

Networking: Building a graph

To the point that some CS people call graphs “networks”

Circuits: represented as graphs

Some examples

For each of the following think about what you should choose for
vertices and edges.

The internet. Edge; have
Vertices: webpages. Edges from a to b if a has a hyperlink to b. direction

Facebook friendships
Vertices: people. Edges: if two people are friends

Edges don't
Input data for the “6 Degrees of Kevin Bacon” game have direction
Vertices: actors. Edges: if two people appeared in the same movie
Or: Vertices for actors and movies, edge from actors to movies they appeared in.

Course Prerequisites
Vertices: courses. Edge: from a to b if a is a prereq for b. Edge; have
direction

Graph Terms

This graph is

Graphs can be directed or undirected. disconnected.

Degree: 1

Following on twitter.
Caitlin

Caitlin Outdegree: 2
Robbie

Degree: 0

Indegree: 2 Friendships on Facebook.

Graph Terms

Walk — A sequence of adjacent vertices. Each connected to next by an edge.
G ° G a AB,C,D is a walk.
Sois ABA

(Directed) Walk—must follow the direction of the edges

G e ° G A,B,C,DB is a directed walk.

A B,A Is not.

Length — The number of edges in a walk
- (A,B,C,D) has length 3.

Graph Terms

Path — A walk that doesn’t repeat a vertex. A,B,C,D is a path. A,B,A is not.

Cycle — path with an extra edge from last vertex back to first.

Be careful looking at other sources.

n i n i

Some people call our “walks” “paths” and our “paths” “simple paths”

Use the definitions on these slides.

I~ Representing and Using Graphs

Adjacency Matrix

In an adjacency matrix afu][v] is 1if
there is an edge (u,v), and O
otherwise.

Time Complexity (|V]
Add Edge: O(1)
Remove Edge: O(1)

Check edge exists from (u,v): O(1)
Get neighbors of u (out): O(n)
Get neighbors of u (in): O(n)

:n, E|:

Space Complexity: 0(n?)

@
@

OjuiMhhjlWID|—|O

OO O|—= =0

OO O|= OO |=

OO O|=1O|lO|=—

O OO O0O|= |10

O OO OO |O

OO |=|==1O0O0 O

OO OO OO O

Adjacency List G-Q 0
CRe

@

An array where the u'th element contains a list of
neighbors of u.

Directed graphs: put the out neighbors (a[u] has v 0 > 1-2

for all (u,v) in E) 1 e>0-3

Time Complexity ([V| = n, |E] = m): 2| > 073
Add Edge: () s
Remove Edge: O(min(n, m)) o> 3 4
Check edge exists from (u,v): O(min(n, m)) 6 o>

Get neighbors of u (out): Q(n)
Get neighbors of u (in): O(n + m) Suppose we use a
linked list for each

Space Complexity: O(n + m) node.

Adjacency List Q@ Gl
SRE

@

An array where the u'th element contains a list of
neighbors of u.

Directed graphs: put the out neighbors (a[u] has v 0 > 1-2

for all (u,v) in E) 1| &> 0-3

Time Complexity ([V| = n, [E| = m): 2| o> 0-=3
Add Edge: O(1) i ::15*2*5
Remove Edge: O(1) o> 34
Check edge exists from (u,v): O(1) 6 lols>

Get neighbors of u (out): Q(n)

Get neighbors of u (in): omn) Switch the linked lists to

hash tables, and do

Space Complexity: O(n + m) average case analysis.

Breadth First Search

search (graph)
toVisit.enqueue (first vertex)
mark first vertex as visited
while (toVisit 1s not empty)
current = toVisit.dequeue ()
for (V : current.neighbors())
1f (v 1s not visited)
toVisit.enqueue (V)
mark v as visited
finished.add (current)

Current node: |

Queue: BDECF GHI
Finished: ABDECFCH |

Breadth First Search

search (graph)
toVisit.enqueue (first vertex)
mark first vertex as visited <:>
while (toVisit 1s not empty)
current = toVisit.dequeue () (;/ <:>
for (V : current.neighbors()) <:>
1f (v 1s not visited)
toVisit.enqueue (v) C O
mark v as visited
finished.add (current)

What's the running time of this algorithm?

We visit each vertex at most twice, and each edge at most once: O(|V| + |E])

Depth First Search (DFS)

BFS uses a queue to order which vertex we move to next

Gives us a growing “frontier” movement across graph

Can you move in a different pattern? What if you used a stack instead?

bfs (graph) dfs (graph)
toVisit.enqueue (first vertex) toVisit.push(first vertex)
mark first vertex as visited mark first vertex as visited

while (toVisit 1s not empty) while (toVisit 1s not empty)
current = toVisit.dequeue () current = toVisit.pop ()

for (V : current.neighbors()) for (V : current.neighbors())
1f (v 1s not wvisited) if (V 1s not wvisited)

toVisit.enqueue (V) toVisit.push (v)
mark v as visited mark v as visited

finished.add (current) finished.add (current)

Depth First Search

dfs (graph)
toVisit.push(first vertex)
mark first vertex as visited
while (toVisit 1s not empty) (:?

current = toVisit.pop () <:>

for (V : current.neighbors()) <:> <:> :

if (V 1s not visited)
toVisit.push (v) <z>
mark v as visited

finished.add (current) : O O

Current node: [

Stack: D BHHE
finished: ABEHGF I CD

DFS

Running time?
Same as BFS: O(|V| + |E])

You can rewrite DFS to be a recursive method.

Use the call stack as your stack.
No easy trick to do the same with BFS.

Next week: Using BFS, DFS and other algorithms to solve problems!

