
B-Trees, Slow Sorts Data Structures and 

Parallelism



Announcements

Midterm Grades on gradescope
-Median 89/110

-Mean 90/110

-Standard Deviation: 11.07

-Solutions on webpage later today.

-Regrades will open on gradescope tomorrow.

Project 2 checkpoint Wednesday in lecture



Outline

Crash Course: Memory Hierarchy

B-Trees (our last dictionary)

Why we’re not implementing them

Start Sorting



Dictionaries Review

We’ve talked about two types of dictionaries:

AVL trees – 𝑂(log 𝑛) find, insert, and delete.
-Optimize for worst case

Hash Tables – 𝑂 1 find, insert on average, under assumptions
-Optimize for average case.

One more design goal:
-Optimize behavior for huge datasets.

-Need to understand how memory works.



A False Assumption

We said “every operation takes about the same time”

In order to do big-O analysis.

Most of the time this is true.

It’s always true up to a constant factor. 
-But what if that constant is 5,000,000?

Today: What to do when your dictionary is huge.



Memory Hierarchy
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CPU Register

L1 Cache

L2 Cache

RAM

Disk

What is it?
Typical 

Size
Time

Processor’s 

memory
32 bits ≈free

Extremely 

fast
128KB 0.5 ns

Very fast 2MB 7 ns

what your 

programs need
8GB 100 ns

Large, longtime 

storage
1 TB

8,000,000 

ns



Instructions vs. Memory Access

Memory Number of Instructions

L1 cache 2 instructions

L2 cache 30 instructions

Main memory 250 instructions

Disk 8,000,000 instructions.

Let’s say the processor can do 230 instructions per second. 

How many instructions could you execute while waiting to hear back 

from memory?



Why have we not noticed this?

Very smart people work on algorithms to quickly decide what memory 
to put in caches (in case you need it again).

If your data fits in the cache, you’ll probably never notice.

Compiler optimizations can sometimes ask for data before you need it.

When you ask for one piece of data, the OS will give you that, and 
everything near it. 
-It’s likely to be used soon (think arrays). 

Once you use a value, the OS will keep it in a close by cache.



Two Principles

Temporal Locality:
-If you use some piece of memory, you are likely to use that exact data again pretty 
soon. 

Spatial Locality:
-If you use some piece of memory, you are likely to use nearby data pretty soon.

OS accomplishes this by:

Keeping recently used memory in the cache

Moving memory in “pages” – if you access one data point, you move 
everything nearby with it. 



Pause to Ponder

We’ve seen two dictionary types:

Search tree-based dictionaries

Table-based dictionaries

Which one should we use when we have a huge dataset?



Memory Accesses – Dictionaries

Suppose we have a dictionary with about 250 elements.

Could store as an AVL tree of height about 50.

How many disk accesses might it take to find?

What if we made the tree shorter?

Make it an 𝑀-ary tree, not a binary tree. (How do we search?)

Disk accesses? Only 50 log𝑀 2 If 𝑀 = 30, we’ll cut the memory accesses 
to about 10. 𝑀 will often be even bigger.



B-Trees

Reduce memory accesses:

Don’t put the values in a node, just the keys.

Make each node take up exactly one memory block.

We now have room for a bunch of keys, have a bunch of children.
-Will make the tree shorter.

Put all the values in leaves. 
-Again make each leaf take up exactly one memory block.



B-Trees

How do we search?

12 19 44

keys < 12

12 ≤keys < 19 19 ≤ keys < 44

All keys ≥ 44

Binary search on “signpost” keys. 

Entire node is in cache – binary search doesn’t need to go out to memory.



How Tall?

If the tree is “balanced” then we’ll get height about log𝑀 𝑛

To maintain balance:

1.Root (special case):
-Starts as a leaf (if almost empty – this should be very rare)

-Otherwise has between 2 and 𝑀 children

2.Every other internal node has between ⌈𝑀/2⌉ and 𝑀 children.

3.Leaves have between ⌈𝐿/2⌉ and 𝐿 (key, value) pairs.

4.Keep all leaves at same level.

Choose 𝐿 and 𝑀 as large as possible while still fitting in a block



Analysis

Memory accesses to find, insert, delete: about log𝑀(𝑛)

Much better than AVL trees as 𝑀 gets large. 

Running times? Need to think about the algorithms:



Insert Algorithm

Find then add to leaf.

If leaf is already full, then split leaf in two 
-(still meet “at least half full condition)

That adds a child to the parent node. What if it’s full?

Split that node in two! 

Recurse up the tree (splitting as necessary)



Insertion (simple)

Try inserting (32, 5) and (36, 6) into the following tree

18

3 1

14 3

18 2

30 4

32 5

32 5

36 6

32



Insertion – splitting internal nodes

Try inserting (15, 7) and (16, 8) into our existing tree

18

3 1

14 3

18 2

30 4

32 5

36 6

32

15 7

15 7

16 8

32

3 1

14 3

18 2

30 4

32 5

36 6

15

15 7

16 8

Make a new internal node!

Make a new internal node!
18



Delete Algorithm

Find and remove from the relevant leaf. 

If leaf “underflowed” to less than ⌈𝐿/2⌉ elements:

Try to “adopt” from a neighbor (then update signposts)

If neighbor is at exactly ⌈𝐿/2⌉ elements, can’t adopt. Merge instead.

-Have to recurse up the tree if we caused our parent to underflow.

If we cause the root to underflow to one child, delete it.

-This is the only way to make  the height of the tree decrease.



Deletion (simple)

32

3 1

12 3

14 7

18 2

30 4

32 5

36 6

15

15 7

16 8

18

Delete 16. Adopt from neighbor.

Keep leaf array sorted.

15 714 7

15 7

3 1

12 3

14



Deletion – merging nodes

32

3 1

12 3

18 2

30 4

32 5

36 6

15

15 7

14 7

18

Delete 14. Can’t adopt, so merge.

15 73 1

12 3

15 7



Deletion – merging nodes

32

3 1

12 3

18 2

30 4

32 5

36 6

15

18

Delete 14. Merge up the tree.

Update “signpost” to be smallest key in its right subtree.

3 1

12 3

15 7

18 2

30 4

32 5

36 6

3218

3 1

12 3

15 7



Running times:

Insert (worst case):

Find correct leaf 𝑂(log2𝑀 log𝑀 𝑛)

insert in leaf 𝑂(𝐿)

split leaf 𝑂(𝐿)

split parents all the way to root 𝑂(𝑀 log𝑀 𝑛)

Delete

Find correct leaf 𝑂(log2𝑀 log𝑀 𝑛)

Remove from leaf 𝑂(𝐿)

Adopt/merge with neighbor 𝑂(𝐿)

Adopt/merge all the way to root:𝑂(𝑀 log𝑀 𝑛)

Totals for both:

𝑂(𝑀 log𝑀 𝑛 + 𝐿)

Remember, the point is not 

speed, but memory accesses!



B-Trees in Java?

If you want to implement a B-Tree, should you use Java?

Java is designed to obscure details of the system you’re on from you.

But B-Trees need to know sizes of the memory pages.



Picture of Java object

Class TreeNode{

K[] keys

TreeNode[] children

int numChildren

…

}

Key1

Key2

…

KeyM-1

Child1

…

ChildM

numChildren

This is what we need our object to look 

like. Is this what it looks like?



What it Really Looks Like

Child[] Pointer

Key[] Pointer

numChildren

Child1

Child2

…

ChildM

Key1

Key2

…

KeyM-1



Don’t Use Java

Even worse – Java uses “indirection” everywhere with objects. 
-We wanted to stuff all the values in a single page.

-Not going to happen with Java Objects – everything is pointers

The JVM allocates the memory. No way to tell it to put things next to 
each other

If you want to implement a B-Tree.

Use C. (or C++ or some other lower-level language)



Sorting



Sorting

General Pre-processing Step

Let’s us find the 𝑘th element in 𝑂(1) time for any 𝑘.

Also a convenient way to discuss algorithm design principles.



Three goals 

Three things you might want in a sorting algorithm:

In-Place
-Only use 𝑂(1) extra memory. 

-Sorted array given back in the input array.

Stable
-If a appears before b in the initial array and a.compareTo(b) == 0

-Then a appears before b in the final array.

-Example: sort by first name, then by last name. 

Fast



Insertion Sort

How you sort a hand of cards.

Maintain a sorted subarray at the front.

Start with one element.

While(your subarray is not the full array)
-Take the next element not in your subarray

-Insert it into the sorted subarray



Insertion Sort

for(i from 1 to n-1){

int index = i

while(a[index-1] > a[index]){

swap(a[index-1], a[index])

index = index-1

}

}



Insertion Sort

0 1 2 3 4 5 6 7 8 9

2 3 6 7 5 1 4 10 2 8

33

Sorted Items Unsorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted Items
Current Item

https://www.youtube.com/watch?v=ROalU379l3U

https://www.youtube.com/watch?v=ROalU379l3U


Insertion Sort Analysis

Stable? Yes! (If you’re careful)

In Place Yes!

Running time:
-Best Case: 𝑂(𝑛)

-Worst Case: 𝑂(𝑛2)

-Average Case: 𝑂 𝑛2

Wednesday: Sorts with better Worst case behavior.


