
Dictionaries I Data Structures and 

Parallelism



Announcements

Project 1 is due Thursday at 11:30 PM.

If you want to use a late day (or two), there’s a form on the webpage.

No Class (or office hours) Wednesday! 

I’ll add an extra office hour Tuesday and Thursday.

Project 2 comes out this weekend. 

Fill out partners form by Thursday at noon
-Even if you want the same partner as P1. 



Announcements

Exercises 2,3 are out, due Friday.

Exercise 4 will come out Tuesday, due Wed. July 11 at NOON 
-Just enough time for us to give feedback before the midterm!

Midterm is next Friday (in lecture)

Friday’s lecture slides are the last thing to be covered on the midterm. 



Outline

Two new (old?) ADTs
-Dictionaries

-Sets

Review BSTs

Intro AVL trees



Our Next ADT

Dictionary ADT

find(key) – returns the stored value 

associated with key.

state

behavior
Set of (key, value) pairs

delete(key) – removes the key and its value 

from the dictionary.

insert(key, value) – inserts (key, value) pair. 

If key was already in dictionary, overwrites 

the previous value.

Real world intuition:

keys: words

values: definitions

Dictionaries are 

often called “maps”



Our Next ADT

Set ADT

find(element) – returns true if element is in 

the set, false otherwise.

state

behavior
Set of elements

delete(key) – removes the key and its value 

from the dictionary.

insert(element) – inserts element into the 

set.

Usually implemented 

as a dictionary with 

values “true” or “false”

Later in the course 

we’ll want more 

complicated set 

operations like 

union(set1, set2) 



Uses of Dictionaries

Dictionaries show up all the time.

There are too many applications to really list all of them:
-Phonebooks

-Indexes

-Databases

-Operating System memory management

-The internet (DNS)

-…

Any time you want to organize information for easy retrieval. 

We’re going to design three completely different implementations of 
Dictionaries – they have that many different uses.  



Simple Dictionary Implementations

Insert Find Delete

Unsorted Linked List

Unsorted Array

Sorted Linked List

Sorted Array

What are the worst case running times for each operation if you have 𝑛
(key, value) pairs. 

Assume the arrays do not need to be resized. 

Think about what happens if a repeat key is inserted!



Simple Dictionary Implementations

Insert Find Delete

Unsorted Linked List Θ(𝑛) Θ(𝑛) Θ(𝑛)

Unsorted Array Θ(𝑛) Θ(𝑛) Θ 𝑛

Sorted Linked List Θ(𝑛) Θ(𝑛) Θ(𝑛)

Sorted Array Θ(𝑛) Θ(log 𝑛) Θ(𝑛)

What are the worst case running times for each operation if you have 𝑛
(key, value) pairs. 

Assume the arrays do not need to be resized. 

Think about what happens if a repeat key is inserted!



Aside: Lazy Deletion

Lazy Deletion: A general way to make delete() more efficient.

Don’t remove the entry from the structure, just “mark” it as deleted.

Benefits:
-Much simpler to implement

-More efficient (no need to shift values on every single delete)

Drawbacks:
-Extra space:

-For the flag

-More drastically, data structure grows with all insertions, not with the current 
number of items.

-Sometimes makes other operations more complicated.



Simple Dictionary Implementations

Insert Find Delete

Unsorted Linked List Θ(𝑚) Θ(𝑚) Θ(𝑚)

Unsorted Array Θ(𝑚) Θ(𝑚) Θ 𝑚

Sorted Linked List Θ(𝑚) Θ(𝑚) Θ(𝑚)

Sorted Array Θ(𝑚) Θ(log𝑚) Θ(log𝑚)

We can do slightly better with lazy deletion, let 𝑚 be the total number of 

elements ever inserted (even if later lazily deleted)

Think about what happens if a repeat key is inserted!



A Better Implementation

What about BSTs?

Keys will have to be comparable…

Insert Find Delete

Average

Worst



A Better Implementation

What about BSTs?

Keys will have to be comparable…

Insert Find Delete

Average Θ(log 𝑛) Θ(log 𝑛)

Worst Θ(𝑛) Θ(𝑛)

Let’s talk about how to implement delete.



Deletion from BSTs

Deleting will have three steps:
-Finding the element to delete

-Removing the element

-Restoring the BST property



Deletion – Easy Cases

What if the elements to delete is:
-A leaf?

-Has exactly one child?
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Deletion – Easy Cases

What if the elements to delete is:
-A leaf?

-Has exactly one child?
6

72

84

9

Deleting a leaf:

Just get rid of it.

Delete(7)



Deletion – Easy Cases

What if the elements to delete is:
-A leaf?

-Has exactly one child?

6

72

84
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Deleting a node with one 

child:

Delete the node

Connect its parent and child

Delete(4)



Deletion – The Hard Case

What happens if the node to delete has two children?

4
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73
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What if we try

Delete(7)?

What can we replace it 

with?

6 or 8

The biggest thing in left 

subtree or smallest thing in 

right subtree.



A Better Implementation

What about BSTs?

Keys will have to be comparable.

Insert Find Delete

Average Θ(log 𝑛) Θ(log 𝑛)

Worst Θ(𝑛) Θ(𝑛)



A Better Implementation

What about BSTs?

Keys will have to be comparable.

Insert Find Delete

Average Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)

Worst Θ(𝑛) Θ(𝑛) Θ(𝑛)

We’re in the same position we were in for heaps 

BSTs are great on average, 

but we need to avoid the worst case.



Avoiding the Worst Case

Take I:

Let’s require the tree to be complete.

It worked for heaps!

What goes wrong: 

When we insert, we’ll break the completeness property. 

Insertions always add a new leaf, but you can’t control where.

Can we fix it?

Not easily :/



Avoiding the Worst Case

Take II:

Here are some other requirements you might try. Could they work? If 
not what can go wrong?

Root Balanced: The root must have the same number of nodes in its 

left and right subtrees

Recursively Balanced: Every node must have the same number of 

nodes in its left and right subtrees.

Root Height Balanced: The left and right subtrees of the root must 

have the same height.



Avoiding the Worst Case

Take III:

The AVL condition

This actually works. To convince you it works, we have to check:
1. Such a tree must have height 𝑂(log 𝑛) .

2. We must be able to maintain this property when inserting/deleting

AVL condition: For every node, the height of its left subtree and 

right subtree differ by at most 1. 



Bounding the Height

Suppose you have a tree of height ℎ, meeting the AVL condition.

What is the minimum number of nodes in the tree?

If ℎ = 0, then 1 node

If ℎ = 1, then 2 nodes. 

In general?

AVL condition: For every node, the height of its left subtree and 

right subtree differ by at most 1. 



Bounding the Height

In general, let 𝑁() be the minimum number of nodes in a tree of height 
ℎ, meeting the AVL requirement.

𝑁 ℎ =  
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise



Bounding the Height

𝑁 ℎ =  
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise

We can try unrolling or recursion trees. 



Bounding the Height

𝑁 ℎ =  
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise

When unrolling we’ll quickly realize:
-Something with Fibonacci numbers is going on.

-It’s really hard to exactly describe the pattern.

The real solution (using deep math magic beyond this course) is 

𝑁 ℎ ≥ 𝜙ℎ − 1 where 𝜙 is 
1+ 5

2
≈ 1.62



The Proof

To convince you that the recurrence solution is correct, I don’t need to 
tell you where it came from. 

I just need to prove it correct via induction. 

On whiteboard:

Fact: 𝜙 + 1 = 𝜙2


