
More Heaps Data Structures and

Parallelism

CSE 332 - SU 18 ROBBIE WEBER 1

Logistics

Gitlab should run the tests and a “static analysis” every time you push
your P1 code.
-Let us know if that’s not happening.

The spec for stack says operations should take “amortized O(1) time”
You will meet this requirement if you:
-double the size of the array when it fills up

-Take O(n) time to resize

-And take O(1) time when the array isn’t full

Lecture on Friday will explain “amortized” time fully.

Generics, Debugging, “out of memory” info on “handouts” webpage

CSE 332 - SU 18 ROBBIE WEBER 2

Outline

More Logistics:

You should be added to gradescope (submit exercise 1 there by Friday)

Ben Jones will lecture Wednesday and Friday
-Robbie will still be checking email.

Today’s Outline:

More Heaps
-Some more operations

-Building a heap all at once

More Algorithm Analysis!

CSE 332 - SU 18 ROBBIE WEBER 3

More Operations

Let’s do more things with heaps!

IncreaseKey(element,priority) Given a pointer to an element of the heap
and a new, larger priority, update that object’s priority.

DecreaseKey(element,priority) Given a pointer to an element of the
heap and a new, smaller priority, update that object’s priority.

Delete(element) Given a pointer to an element of the heap, remove that
element.

Needing a pointer to the element isn’t normal.

Exercise02 will have you think more about why we need it here.

CSE 332 - SU 18 ROBBIE WEBER 4

Even More Operations

BuildHeap(elements 𝑒1, … , 𝑒𝑛) – Given 𝑛 elements, create a heap
containing exactly those 𝑛 elements.

Try 1: Just call insert 𝑛 times.

Worst case running time?

𝑛 calls, each worst case Θ(log 𝑛). So it’s Θ(𝑛 log 𝑛) right?

That proof isn’t valid. There’s no guarantee that we’re getting the worst
case every time!

CSE 332 - SU 18 ROBBIE WEBER 5

BuildHeap Running Time

Let’s try again for a Theta bound.

The problem last time was making sure we always hit the worst case.

If we insert the elements in decreasing order we will!

So we really have 𝑛 Θ(log 𝑛) operations. QED.

There’s still a bug with this proof!

CSE 332 - SU 18 ROBBIE WEBER 6

BuildHeap Running Time (again)

Let’s try once more.

Saying the worst case was decreasing order was a good start.

What are the actual running times?

It’s Θ(ℎ), where ℎ is the current height.

But most nodes are inserted in the last two levels of the tree.
-For most nodes, ℎ is Θ log𝑛 .

So the number of operations is at least
𝑛

2
⋅ Ω(log 𝑛) = Ω 𝑛 log 𝑛 .

CSE 332 - SU 18 ROBBIE WEBER 7

Where Were We?

We were trying to design an algorithm for:

BuildHeap(elements 𝑒1, … , 𝑒𝑛) – Given 𝑛 elements, create a heap
containing exactly those 𝑛 elements.

Just inserting leads to a Θ(𝑛 log 𝑛) algorithm in the worst case.

Can we do better?

CSE 332 - SU 18 ROBBIE WEBER 8

Can We Do Better?

What’s causing the 𝑛 insert strategy to take so long?

Most nodes are near the bottom, and we can make them all go all the
way up.

What if instead we tried to percolate things down?

Seems like it might be faster
-The bottom two levels of the tree have Ω(𝑛) nodes, the top two have 3 nodes.

CSE 332 - SU 18 ROBBIE WEBER 9

Is It Really Faster?

How long does it take to percolate everything down?

Each element at level 𝑖 will do ℎ − 𝑖 operations (up to some constant
factor)

Total operations?

 𝑖=0
ℎ 2𝑖 ℎ − 𝑖 =

𝑖=0
log 𝑛

2𝑖 log 𝑛 − 𝑖 =

Θ(𝑛)

CSE 332 - SU 18 ROBBIE WEBER 10

Floyd’s BuildHeap

Ok, it’s really faster.
But can we make it work?

It’s not clear what order to call the percolateDown’s in.

Should we start at the top or bottom?

CSE 332 - SU 18 ROBBIE WEBER 11

Two Possibilities

void StartTop(){

for(int i=0; i < n;i++){

percolateDown(i)

}

}

CSE 332 - SU 18 ROBBIE WEBER 12

void StartBottom(){

for(int i=n; i >= 0;i--){

percolateDown(i)

}

}

Try both of these on some

trees. Is either of them

possibly an ok algorithm?

Only One Possiblity

If you run StartTop() on this heap, it will fail.

CSE 332 - SU 18 ROBBIE WEBER 13

3

31

78

12 4

6

76

73

7

1

8

Only One Possibility

But StartBottom() seems to work.

Does it always work?

CSE 332 - SU 18 ROBBIE WEBER 14

3

31

78

12 4

6

7

6

31

8

1

7

7

2

Let’s Prove It!

Well, let’s sketch the proof of it.
On the whiteboard.

CSE 332 - SU 18 ROBBIE WEBER 15

More Operations

Let’s do more things with heaps!

IncreaseKey(element,priority) Given a pointer to an element of the heap
and a new, larger priority, update that object’s priority.

DecreaseKey(element,priority) Given a pointer to an element of the
heap and a new, smaller priority, update that object’s priority.

Delete(element) Given a pointer to an element of the heap, remove that
element.

BuildHeap(elements 𝑒1, … , 𝑒𝑛) – Given 𝑛 elements, create a heap
containing exactly those 𝑛 elements.

CSE 332 - SU 18 ROBBIE WEBER 16

One Last Operation

Merge(heap1, heap2) given two heaps, combine them into one valid
heap.

We can use buildheap for this. It runs in 𝑂(𝑛) time, where 𝑛 is the size
of the new, combined heap.

Can we do better?

CSE 332 - SU 18 ROBBIE WEBER 17

Better Merge?

There are alternative implementations of minimum priority queues that
merge better than regular heaps.

More details in the textbook, leftist heaps, skew heaps, binomial queues.

Main idea: don’t have a rigid complete tree, allow for a more
complicated tree structure.

Benefit: can merge in 𝑂(log 𝑛) time

Drawback: need to use actual pointers – no more array implementation

IT’S A TRADEOFF!!!

CSE 332 - SU 18 ROBBIE WEBER 18

Analyzing Recursive Code

CSE 332 - SU 18 ROBBIE WEBER 19

Calculating Running Times

Here’s some code for calculating the length of a linked list:

What’s its running time?

Length(Node curr){

if(curr.next == null)

return 1;

return 1 + Length(curr.next);

}

We can analyze all the “non-recursive” work like usual

What about the recursive work?
CSE 332 - SU 18 ROBBIE WEBER 20

Writing a Recurrence

If the function runs recursively, our formula for the running time should
probably be recursive as well.

Such a formula is a recurrence.

𝑇 𝑛 =
𝑇 𝑛 − 1 + 2 if 𝑛 > 1
1 otherwise

What does this say?

The input to 𝑇 is the size of the input to the Length.

If the input to T() is large, the running time depends on the recusive call.

If not we can just use the base case.

CSE 332 - SU 18 ROBBIE WEBER 21

Another example

Mystery(int n){

if(n == 1)

return 1;

for(int i=0; i < n*n; i++){

for(int j = 0; j < n; j++){

System.out.println(“hi!”);

}

}

return Mystery(n/2)

}

CSE 332 - SU 18 ROBBIE WEBER 22

𝑇 𝑛 = 𝑇 𝑛/2 + 𝑛3 + 𝑛2 + 1 if 𝑛 > 1
1 otherwise

Try It On Your Own

CSE 332 - SU 18 ROBBIE WEBER 23

Mystery(int n){

if(n <= 4)

return 1;

for(int i=0; i < n; i++){

if(i % 3 == 2)

break;

}

return Mystery(n - 5)

}

𝑇 𝑛 =
𝑇 𝑛 − 5 + 3 if 𝑛 > 4
1 otherwise

What Do We Do With That

That’s nice. So what’s the big-Θ bound.

Ben will teach you how to find the big-Θ on Wednesday!

CSE 332 - SU 18 ROBBIE WEBER 24

