
Priority Queues Data Structures and

Parallelism

CSE 332 SU 18 - ROBBIE WEBER 1

Logistics

Project 1:
-Due Thursday July 5th at 11:30 PM

-One “Checkpoint” in lecture on Friday

Checkpoint:
-The project spec lists where we recommend you be (it represents being about halfway).

-At the end of lecture on Friday, you’ll talk to a staff member about where you are on the
project.

-As long as you’ve made a good faith effort to be half-way done, you’ll “pass” the
checkpoint.

Tokens:
-4 tokens per person. You can use them to either

-Get a late day on a project (max 2 per project)

-Redo an exercise in the last week of the quarter.

CSE 332 SU 18 - ROBBIE WEBER 2

More Logistics!

Exercise 01 will come out tonight, due Friday (it should make sense after class today)

Robbie is out of town most of next week.

-Ben Jones (another instructor) will cover lectures on Wednesday and Friday.

- I’ll be checking email at least once per day.

CSE 332 SU 18 - ROBBIE WEBER 3

A New ADT

Our previous worklists (stacks, queues, etc.) all choose the next element based on the order
they were inserted.

That’s not always a good idea.

Emergency rooms aren’t first-come-first-served.

Sometimes our objects come with a priority, that tells us what we need to do next.

An ADT that can handle a line with priorities is a priority queue.

CSE 332 SU 18 - ROBBIE WEBER 4

Priority Queue ADT

Min Priority Queue ADT

removeMin() – returns the element

with the smallest priority, removes

it from the collection

state

behavior

Set of comparable values

- Ordered based on “priority”

peekMin() – find, but do not

remove the element with the

smallest priority

insert(value) – add a new

element to the collection

Uses:

• Operating System

• Well-designed printers

• Huffman Codes (in 143)

• Sorting (in Project 2)

• Graph algorithms

CSE 332 SU 18 - ROBBIE WEBER 5

Implementing Priority Queues: Take I

Insert removeMin

Unsorted Array

Unsorted Linked List

Sorted Linked List

Sorted Circular Array

Binary Search Tree

Maybe we already know how to implement a priority queue.

How long would insert and removeMin take with these data structures?

For Array implementations, assume that the array is not yet full.

Other than this assumption, do worst case analysis.
CSE 332 SU 18 - ROBBIE WEBER 6

Review: Binary Search Trees

A BST is:

1. A binary tree

2. For each node, everything in its left subtree is smaller than it and
everything in its right subtree is larger than it.

CSE 332 SU 18 - ROBBIE WEBER 7

Are These BSTs?

CSE 332 SU 18 - ROBBIE WEBER 8

6

73

85

6

52

84

9

1

2

3

4

5

Implementing Priority Queues: Take I

Insert removeMin

Unsorted Array Θ(1) Θ(𝑛)

Unsorted Linked List Θ(1) Θ(𝑛)

Sorted Linked List Θ(𝑛) Θ(1)

Sorted Circular Array Θ(𝑛) Θ(1)

Binary Search Tree

Maybe we already know how to implement a priority queue.

How long would insert and removeMin take with these data structures?

For Array implementations, assume that the array is not yet full.

Other than this assumption, do worst case analysis.
CSE 332 SU 18 - ROBBIE WEBER 9

Implementing Priority Queues: Take I

Insert removeMin

Unsorted Array Θ(1) Θ(𝑛)

Unsorted Linked List Θ(1) Θ(𝑛)

Sorted Linked List Θ(𝑛) Θ(1)

Sorted Circular Array Θ(𝑛) Θ(1)

Binary Search Tree Θ(𝑛) Θ(𝑛)

Maybe we already know how to implement a priority queue.

How long would insert and removeMin take with these data structures?

For Array implementations, assume that the array is not yet full.

Other than this assumption, do worst case analysis.
CSE 332 SU 18 - ROBBIE WEBER 10

Implementing Priority Queues: Take II

BSTs have really bad behavior in the worst case, but is it actually a common problem?

Fact: On average, the height of a BST is 𝑂(log 𝑛)

(for some suitable definition of “average”)

Can we somehow get that behavior in the worst case for priority queues?

CSE 332 SU 18 - ROBBIE WEBER 11

BST Properties

A BST is:

1. A binary tree

2. For each node, everything in its left subtree is smaller than it and everything in its right
subtree is larger than it.

Point 2 is what causes the really bad behavior in the worst case.

We probably don’t want exactly that requirement for implementing a priority queue.

Maybe we can explicitly enforce that we don’t get a degenerate tree.

CSE 332 SU 18 - ROBBIE WEBER 12

Binary Heaps

A Binary Heap is

1. A Binary Tree

2. Every node is less than or equal to all of its children

-In particular, the smallest element must be the root!

3. The tree is complete

-Every level of the tree is completely filled, except possibly the last row, which is filled from
left to right.

-No degenerate trees!

CSE 332 SU 18 - ROBBIE WEBER 13

Tree Words

Height – the number of edges on the longest path from the root to a leaf.

CSE 332 SU 18 - ROBBIE WEBER 14

1

2

3

4

5

Height 4

2

46 5

4
Height 1

Tree Words

Complete – every row is completely filled, except possibly the last row, which is filled from
left to right.

Perfect – every row is completely filled

CSE 332 SU 18 - ROBBIE WEBER 15

2

58

46

9

5

4 2

58

46 5

4 2

58

46

9

5

4

2

Complete, but not perfect Neither Both Perfect and Complete

Heights of Perfect Trees

How many nodes are there in level 𝑖 of a perfect binary tree?

On the whiteboard we derived that the number of nodes on level 𝑖 of a
binary tree was 2𝑖.

Thus the total number of nodes in a perfect binary tree of height ℎ is

 𝑖=0
ℎ 2𝑖 = 2ℎ+1 − 1.

So if we have 𝑛 nodes in a perfect tree, we can use the formula

𝑛 = 2ℎ+1 − 1 to conclude that ℎ = 𝑂(log 𝑛),so

A perfect tree with 𝑛 nodes has height 𝑂(log 𝑛).

A similar argument can show the same statement for complete trees.

CSE 332 SU 18 - ROBBIE WEBER 16

Binary Heaps

A Binary Heap is

1. A Binary Tree

2. Every node is less than or equal to all of its children

-In particular, the smallest element must be the root!

3. The tree is complete

-Every level of the tree is completely filled, except possibly the last row, which is filled from
left to right.

-No degenerate trees!

CSE 332 SU 18 - ROBBIE WEBER 17

Implementing Heaps

Let’s start with removeMin.

Idea: take the bottom right-most node and use it to plug the hole

Shape is correct now

But that value might be to big. We need to “percolate it down”

CSE 332 SU 18 - ROBBIE WEBER 18

2

58

46

9

5

4

Implementing Heaps

Insertion

What is the shape going to be after the insertion?

Again, plug the hole first.

Might violate the heap property. Percolate it up

CSE 332 SU 18 - ROBBIE WEBER 19

3

85

74

16 7

1

1

3

An Optimization

Pointers are annoying.

They’re also slow.

Our tree is so nicely shaped, we don’t need pointers

We can use an array instead.

CSE 332 SU 18 - ROBBIE WEBER 20

1

85

34

76

1 4 3 5 6 8 7

0 1 2 3 4 5 6 7 8 9 10

An Optimization

If I’m at index 𝑖, what is the index of:

My left child, right child and parent?

My left child: 2𝑖

My right child: 2𝑖 + 1

My parent:
𝑖

2

CSE 332 SU 18 - ROBBIE WEBER 21

1

85

34

76

1 4 3 5 6 8 7

0 1 2 3 4 5 6 7 8 9 10

