
Algorithm Analysis Data Structures and

Algorithms

CSE 332 SU 18 - ROBBIE WEBER 1

Logistics

Piazza
-Sign up for Piazza

-Directions to opt out of Piazza careers are on piazza.

Section tomorrow
-Caitlin and Alon will co-lead section

-Chance to practice problems about what we learned in lecture.

-Occasionally learn new material

-This week: Talk about concepts in your first programming project.

Project 1 out (late) tonight

If you don’t have a partner yet, meet up here at the end of class, and we’ll
pair you up.

CSE 332 SU 18 - ROBBIE WEBER 2

Algorithm Analysis

I have some problem I need solved.

Caitlin and Alon have different ideas for how to solve the problem. How do
we know which is better?

Easy. Have them both write the code and run it, and see which is faster.

THIS IS A TERRIBLE IDEA

How can we analyze their suggestions before they have to write the code,
and in a way that is independent of their machines?

CSE 332 SU 18 - ROBBIE WEBER 3

Comparing Algorithms

We want to know when one algorithm will be better than another
-Better might mean faster.

-Or using less memory.

We really care about large inputs.
-If n=15, any algorithm will probably finish in less than a second anyway…

Want our answer to be independent of computer speed or programming
language.

And we want an answer that’s mathematically rigorous.

CSE 332 SU 18 - ROBBIE WEBER 4

Analyzing Code

Assume basic operations take the same constant amount of time.

What’s a basic operation?
-Adding ints or doubles

-Assignment

-Incrementing a variable

-A return statement

-Accessing an array index or an object field

What’s not a basic operation?
-Making a method call.

This is a LIE but it’s a very useful lie.

CSE 332 SU 18 - ROBBIE WEBER 5

What Are We Counting?

Worst case analysis
-For a given input size, what’s the running time for the worst state our data structure we
can be in or the worst input we can give?

Best case analysis
-What is the number of steps for the best state of our structure and the best question?

Average case analysis
-How are we doing on average over all possible inputs/states of our data structure?

-Have to ask this question very carefully to get a meaningful answer

We usually do worst case analysis.

CSE 332 SU 18 - ROBBIE WEBER 6

Example

Linear search

CSE 332 SU 18 - ROBBIE WEBER 7

int linearSearch(int[] A, int target){

for(int i = 0; i < A.length; i++){

if(A[i] == target)

return i;

}

return -1;

}

What is the worst case number of simple

operations for this piece of code?
Let A have 𝑛 entries.

Asymptotic Notation

That’s a nice formula. But does everything in it matter?

Multiplying by constant factors doesn’t matter – let’s just ignore them.

Lower order terms don’t matter – delete them.

Gives us a “simplified big-O”

10𝑛 log 𝑛 + 3𝑛

5𝑛2 log 𝑛 + 13𝑛3

20𝑛 log log 𝑛 + 2 𝑛 log𝑛

23𝑛

CSE 332 SU 18 - ROBBIE WEBER 8

𝑂(𝑛 log 𝑛)

𝑂 𝑛3

𝑂(𝑛 log 𝑛)

𝑂(8𝑛)

Formally Big-O

We wanted to find an upper bound on our algorithm’s running time, but

-We don’t want to care about constant factors.

-We only care about what happens as 𝑛 gets large.

The formal, mathematical definition is Big-O.

CSE 332 SU 18 - ROBBIE WEBER 9

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

We also say that 𝑔 𝑛 “dominates” 𝑓(𝑛).

Why is that the definition?

Why 𝑛0?

CSE 332 SU 18 - ROBBIE WEBER 10

Why 𝑐?

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

Why Are We Doing This?

You already intuitively understand what big-O means.

Who needs a formal definition anyway?
-We will.

Your intuitive definition and my intuitive definition might be different.

We’re going to be making more subtle big-O statements in this class.
-We need a mathematical definition to be sure we’re on the same page.

Once we have a mathematical definition, we can go back to intuitive thinking.
-But when a weird edge case, or subtle statement appears, we can figure out what’s
correct.

CSE 332 SU 18 - ROBBIE WEBER 11

Writing Proofs

Claim: For every odd integer 𝑦, there exists an even integer 𝑥, such that
𝑥 > 𝑦.

Proof:

Let 𝑦 be an arbitrary odd integer. By definition, 𝑦 = 2𝑧 + 1 for some
integer 𝑧.

Consider x = 2(𝑧 + 1).

𝑥 is even (since it can be written as 2 times some integer) and

𝑥 = 2 𝑧 + 1 = 2𝑧 + 2 > 2𝑧 + 1 = 𝑦.

CSE 332 SU 18 - ROBBIE WEBER 12

Writing Proofs

Where did that 𝑥 = 2 𝑧 + 1 come from?

You probably came up with that even integer first, before you started writing
the proof.

That was some “scratch work” – the insight isn’t explained in the final proof
-You just say “Consider”

For this class, when you’re writing big-O proofs, include both your scratch
work and the final proof.
- If you make a mistake, it’s much easier for us to diagnose.

-Which makes it easier for you to get partial credit.

CSE 332 SU 18 - ROBBIE WEBER 13

Using the Definition

Let’s show: 10𝑛2 + 15𝑛 is 𝑂(𝑛2)

CSE 332 SU 18 - ROBBIE WEBER 14

Recreation of whiteboard:

Scratch work:

10𝑛2 ≤ 10𝑛2

15𝑛 ≤ 15𝑛2 for 𝑛 ≥ 1
10𝑛2 + 15𝑛 ≤ 25𝑛2 for 𝑛 ≥ 1

Proof:

Take 𝑐 = 25 and 𝑛0 = 1.

The inequality 10𝑛2 ≤ 10𝑛2 is always true. The inequality 15𝑛 ≤ 15𝑛2 is true for 𝑛 ≥ 1, as the right hand side

is a factor of 𝑛 more than the right hand side.

As long as both inequalities are true we can add them, thus

10𝑛2 + 15𝑛 ≤ 25𝑛2 holds as long as 𝑛 ≥ 1.

This is exactly the inequality we needed to show.

Edge Cases

True or False: 10𝑛2 + 15𝑛 is 𝑂(𝑛3)

[this is an edge case]

It’s true – it fits the definition.

Big-O is just an upper bound. It doesn’t have to be a good upper bound.

If we want the best upper bound, we’ll ask you for a tight big-O bound.

𝑂 𝑛2 is the tight bound for this example.

It is (almost always) technically correct to say your code runs in time 𝑂(𝑛!).
- DO NOT TRY TO PULL THIS TRICK ON AN EXAM. Or in an interview.

CSE 332 SU 18 - ROBBIE WEBER 15

O, Omega, Theta [oh my?]

Big-O is an upper bound
- My code takes at most this long to run

Big-Omega is a lower bound

Big Theta is “equal to”

CSE 332 SU 18 - ROBBIE WEBER 16

𝑓(𝑛) is Ω(𝑔 𝑛) if there exist positive

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0,

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) is Θ(𝑔 𝑛) if

𝑓 𝑛 is 𝑂(𝑔 𝑛) and 𝑓 𝑛 is Ω(𝑔 𝑛).

Big-Theta

Viewing O as a class

Sometimes you’ll see big-O defined as a family or set of functions.

CSE 332 SU 18 - ROBBIE WEBER 17

O(𝑔 𝑛) is the set of all functions 𝑓 𝑛 such

that there exist positive constants 𝑐, 𝑛0 such

that for all 𝑛 ≥ 𝑛0, 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O (alternative definition)

For that reason, some people write 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 where we wrote “𝑓 𝑛 is 𝑂(𝑔 𝑛)”.

Other people write “𝑓 𝑛 = 𝑂 𝑔 𝑛 ” to mean the same thing.

The set of all functions that run in linear time (i.e. 𝑂(𝑛)) is a “complexity class.”

We’ll talk more about complexity classes much later in the quarter.

We never write 𝑂(5𝑛) instead of 𝑂(𝑛) – they’re the same thing!

It’s like writing
6

2
instead of 3. It just looks weird.

Useful Vocab

The most common running times all have fancy names:

𝑂(1) constant

𝑂(log 𝑛) logarithmic

𝑂 𝑛 linear

𝑂 𝑛2 quadratic

𝑂(𝑛3) cubic

𝑂(𝑛𝑐) polynomial (where c is a constant)

𝑂(𝑐𝑛) exponential (where c is a constant)

CSE 332 SU 18 - ROBBIE WEBER 18

What’s the base of the log?

If I write log 𝑛, without specifying a base, I mean log2 𝑛 .

But does it matter for big-O?

Suppose we found an algorithm with running time log5 𝑛 instead.

Is that different from 𝑂 log2 𝑛 ?

No!

log𝑐 𝑛 =
log2 𝑛

log2 𝑐
If 𝑐 is a constant, then log2 𝑐 is just a constant, and we can

hide it inside the 𝑂().

CSE 332 SU 18 - ROBBIE WEBER 19

