
Welcome to CSE 332 Data Structures and

Parallelism

CSE 332 SU 18 -- ROBBIE WEBER 1

Welcome

We have 9 weeks to learn a lot!
-Fundamental data structures and algorithms.

-And their analysis

-Writing Parallel Code

CSE 332 SU 18 -- ROBBIE WEBER 2

Outline

Introductions

Course Mechanics

Start of content

-Review of queues and stacks

CSE 332 SU 18 -- ROBBIE WEBER 3

Course Staff

Instructor: Robbie Weber

-PhD student in CSE

-Research in algorithm design

TAs

Caitlin Schaefer Alon Milchgrub

CSE 332 SU 18 -- ROBBIE WEBER 4

What’s in this course?

Data Structures and Parallelism

Data structures and Algorithms (about 80% of the course)
-Starting to really think like a computer scientist.

-Make design decisions, think about trade-offs.

-Core data structures and algorithms.

-Mathematically analyze those structures and algorithms.

-Implement them

Parallelism
-First serious treatment of programming with multiple threads

CSE 332 SU 18 -- ROBBIE WEBER 5

Logistics

Textbook:

Weiss, Data Structures and Algorithm Analysis in Java

OPTIONAL (useful if you want more info, or an alternative presentation)

Piazza (message board) please sign up.

Gradescope

Midterm: Friday July 13th (in lecture)

Final: Split over the last two days of classes:
-Thursday August 16th (in section)

-Friday August 17th (in lecture)

Email Robbie ASAP if you have a conflict with any of these dates.

CSE 332 SU 18 -- ROBBIE WEBER 6

Logistics – Projects

We have a lot to cover…
- in less time than usual.

3 Programming Projects

-Done with a partner

-Split over multiple weeks

-“Checkpoints” along the way

Your first project comes out Wednesday

There is a partner form on the webpage, fill it out by Tuesday afternoon.

In the meantime: update your Java and Eclipse installs.

CSE 332 SU 18 -- ROBBIE WEBER 7

Logistics – Exercises

Assigned throughout the quarter.

More frequent (about 10-12). Not as significant time investment as
programming projects.

Starting earlier is better (they can take some thought).

Practice the theoretical aspects of the course.

Individual

CSE 332 SU 18 -- ROBBIE WEBER 8

Academic Honesty

Partners can obviously talk about every aspect of your code in the projects
-And you should, pair programming is highly recommended.

In all other cases, high level discussion is fine.

But you must:
-Not take any written notes away from your discussion.

-List everyone you collaborated with on your assignment.

Goal is for you to learn the material.

More details in syllabus.

CSE 332 SU 18 -- ROBBIE WEBER 9

Abstract Data Type
An Abstract Data Type (ADT) is a set of expected behaviors for a set of
operations.

Queue ADT

remove () – returns the element

that has been in the collection the

longest, and removes it.

state

behavior
Set of elements

peek () – find, but do not remove

the element that has been in the

collection the longest.

insert(element) – add a new

element to the collection.

Stack ADT

remove () – returns the element

that has been in the collection the

shortest, and removes it.

state

behavior

Set of elements

peek () – find, but do not remove

the element that has been in the

collection the shortest.

insert(element) – add a new

element to the collection.

CSE 332 SU 18 -- ROBBIE WEBER 10

Data Structure

A clever way of organizing data points
-A data structure is an implementation of an ADT.

Ways to implement a queue

Array

LinkedList

10 17 3 4 15 13

7 23 15

head tail

14

CSE 332 SU 18 -- ROBBIE WEBER 11

“Circular” Array

A different queue implementation

Removing elements is expensive. What if we just remember where the next
element is?

10 17 3 4 15 13

front back

CSE 332 SU 18 -- ROBBIE WEBER 12

“Circular” Array

What about insertions?

We can “wrap around”

At least until the array is completely full.

10 17 3 4 15 2313

front back

5

CSE 332 SU 18 -- ROBBIE WEBER 13

Tradeoffs

With a doubly-linked list, you can get 𝑂(1) insertions and removals as well.

If they’re both 𝑂(1) why would you choose one over the other?

Updating all those pointers is a constant, but it’s a larger constant than array
lookups.

If you know the size in advance a circular array has less overhead

But if you don’t a linked list easily handles growing. The circular array would
be annoying to grow.

CSE 332 SU 18 -- ROBBIE WEBER 14

Things To Do

Now is a great time to find a partner

I’ll be up here if you have questions

Things to do:
Survey

Sign up for Piazza

Fill out partner form by tomorrow

Get your programming environment ready.

CSE 332 SU 18 -- ROBBIE WEBER 15

