
Checkpoint 1: Due Wed, July 18, in lecture
P2 Due Date: Due Wed, July 25 at 11:30 PM

The purpose of this project is to implement various data structures and algo-
rithms described in class, and understand the tradeoffs between different imple-
mentation choices, especially the various dictionary implementations.

1 Overview

One of the most important ADTs is the Dictionary and one of the most studied problems is
sorting. In this assignment, you will write multiple implementations (AVLTree, HashTable,
etc.) of Dictionary and multiple sorting algorithms.

All of these implementations will be used to drive word suggestion, spelling correction, and
autocompletion of text. These algorithms are very similar to the ones smartphones use for
these problems, and you will see that they do relatively well with a small effort. We will ask
you to test your code by writing a client for WordSuggestor.

We have provided the boring pieces of these programs (e.g., GUIs, printing code, etc.), but
you will write the data structures that back all of the code we’ve written.

Project Restrictions

• You must work in a group of two unless Robbie has already talked to you.

• You may not use any of the built-in Java data structures. One of the main learning
outcomes is to write everything yourself.

• You may use the math package.

• You may not edit any file in the cse332.* packages.

• The design and architecture of your code are a substantial part of your grade.

• The Write-Up is a substantial part of your grade; do not leave it to the last minute.
It is significantly longer than the writeup for project 1. Seriously, don’t leave it for the
last minute.

1



• DO NOT MIX any of your experiment or above and beyond files with the normal
code. Before changing your code for experiments or above and beyond, copy the
relevant files into the corresponding package (e.g., aboveandbeyond, experiments).
If your code does not compile because you did not follow these instructions, you will
receive a 0 for all automated tests.

• Make sure to not duplicate fields that are in super-classes (e.g., size). This will lead
to unexpected behavior and failures of tests.

2 NGrams and Generating Text

An NGram is a list of n words appearing in order in a text. They are often used in textual
analysis to see how frequent patterns are. In this assignment, you will use them to generate
new text that sounds like the author of an original text. This type of text generation is how
word prediction works on your phone.

P1 and Beyond

This project actually extends on p1 a lot! You will need to port over (i.e., put them in the
same packages) the following:

• datastructures.worklists: All your simple WorkLists: ArrayStack, ListFIFOQueue,
CircularArrayFIFOQueue

• datastructures.worklists: Your MinFourHeap (Note that it will not immediately
compile, because the interfaces have changed slightly–more on that later.)

• datastructures.dictionaries: Your HashTrieSet and your HashTrieMap

Be sure you do NOT place these in cse332.datastructures.worklists. After you port
these files over, CircularArrayFIFOQueue won’t compile. It defines a type parameter E in
CircularArrayFIFOQueue<E> at the top of the class, but you should replace this E with “E
extends Comparable<E>”.

3 Provided Code

Several of the interfaces and implementations from p1 also appear in p2. We will only
describe the new classes in an attempt to be less overwhelming.

2



• cse332.interfaces.misc

– DeletelessDictionary.java: Like a dictionary, but the delete method is un-
supported.

– ComparableDictionary.java: A DeletelessDictionary that requires compa-
rable keys.

– SimpleIterator.java: A simplification of Java’s Iterator that has no remove

method.

• cse332.datastructures.*

– Item.java: A simple container for a key and a value. This is intended to be used
as the object stored in your dictionaries.

– BinarySearchTree.java: An implementation of Dictionary using a binary search
tree. It is provided as an example of how to use function objects and iterators.
The iterators you write will not be as difficult.

• cse332.*

– WordReader.java: Standardizes inputs into lower case without punctuation.

– LargeValueFirstItemComparator.java: A comparator that considers larger val-
ues as “smaller”, and breaks ties by considering the keys.

– InsertionSort.java: A provided implementation of InsertionSort.

– AlphabeticString.java: This type is a BString that is just a wrapper for a
standard String.

– NGram.java: This type is a BString that represents an n-gram.

• p2.wordcorrector

– AutocompleteTrie.java: This is the trie used for autocompletion; it is backed
by HashTrieMap.

– SpellingCorrector.java: This is the spelling corrector.

• p2.wordsuggestor

– ParseFBMessages.java: This program downloads your facebook messages. It is
intended to be used as a way of generating a personal corpus for the WordSuggestor.
There are more instructions for using this in WriteUp.md

– WordSuggestor.java: This is the word suggestor.

• p2.clients

– NGramTester.java: This class can be used to test your NGramToNextChoicesMap.

You will implement NGramToNextChoicesMap (in p2.wordsuggestor), MoveToFrontList,
AVLTree, and ChainingHashTable (in datastructures.dictionaries), HeapSort, QuickSort,
and TopKSort (in p2.sorts).

3



4 Project Checkpoints

This project will have one checkpoint (and a final due date). A checkpoint is a check-in on
a certain date to make sure you are making reasonable progress on the project. For each
checkpoint, you (and your partner) will meet with a staff member and discuss where you are
on the project (at the end of the lecture on the specified day).

As long as you show up to the checkpoint, and have made a good-faith effort to complete
the relevant part of the project, the checkpoint will not affect your grade in any way.

Checkpoint: (1), (2) (3), (4), (5) Wed, July 18, in lecture
P2 Due Date: (6), (7) Wed, July 25 at 11:30 PM

5 Part 1A: A Dictionary Client & A new Dictionary

Perhaps confusingly, you will begin by writing the client data structure that will use all of
your code. This data structure is called NGramToNextChoicesMap. We have written part of
it for you, but we’re asking you to implement most of this data structure so you become
familiar with the expected behavior of the data structures you will be writing later.

One skill that you will need to pick up over your career is learning new APIs; to help you
with this, we have (without significant explanation) used a few Java 8 features. In particular,
you will want to look up the Supplier class. Although it is overkill, parts of this tutorial:
http://winterbe.com/posts/2014/03/16/java-8-tutorial/ are helpful.

(1) NGramToNextChoicesMap

Before continuing, it is imperative that you understand what an NGram is.

The very general idea of NGramToNextChoicesMap is the following:

NGramToNextChoicesMap will map NGrams to words to counts.

Let’s walk through an example to better understand this. Suppose that the n in n-gram is
2 and the following are the contents of our input file:

4



>> Not in a box.

>> Not with a fox.

>> Not in a house.

>> Not with a mouse.

The key set of the outer map will contain all of the 2-grams in the file. That is, it will be

{“box SOL”, “house SOL”, “in a”, “a fox”, “a house”, “with a”, “not with”, “fox SOL”,
“a box”, “not in”, “SOL not”}

Notice several interesting things about the output: (1) all input is standardized by removing
non-alphanumeric characters converting everything to lower case, and (2) the “word” “SOL”
has been added at the beginning of every line except the first one. “SOL”, which stands for
“start of line”, is inserted so that individual pieces of the corpus do not get mushed together.
Furthermore, note that “a mouse” does not appear in the outer map; the reason for this is
that there is nothing after it to include!

The “top level” maps to another dictionary whose keys are the possible words following that
n-gram. So, for example, the keys of the dictionary that “with a” maps to are {“mouse”,
“fox”}, because “mouse” and “fox” are the only two words that follow the 2-gram “with a”
in the original text.

Finally, the values of the inner dictionary are a count of how many times that word followed
that n-gram. So for example, we have:

• "not in"={a=2}, because the word “a” follows the 2-gram “not in” twice

• "with a"={mouse=1, fox=1}, because “mouse” and “fox” each only appear once after
“with a”

The entire output for the sample input file above looks like:

"SOL not"={in=1, with=2}, "a box"={SOL=1}, "a fox"={SOL=1}, "a house"={SOL=1},

"box SOL"={not=1}, "fox SOL"={not=1}, "house SOL"={not=1}, "in a"={box=1, house=1},

"not in"={a=2}, "not with"={a=2}, "with a"={fox=1, mouse=1}

The order of the entries does not matter (remember, dictionaries are not ordered), but the
contents do.

Part of this project is comparing and contrasting the performance of various implementations
of Dictionary. To do this, we will use different “outer” and “inner” Dictionary types in
NGramToNextChoicesMap. (The outer type is the map from NGrams to words; the inner
type is the map from words to counts.) To make this easier, NGramToNextChoicesMap takes
two “initializers” in its constructor representing these types. For example, to use outer =
Chaining Table and inner = MoveToFrontList, we would write:

5



new NGramToNextChoicesMap(() -> new ChainingHashTable(), () -> new MoveToFrontList())

The “() -> X” notation tells Java to make a function that takes no arguments and returns
the thing on the right. This is handy, because our NGramToNextChoicesMap needs to be able
to create new inner maps for each key in the outer map.

One more important implementation detail is that instead of using type “String” for the
words, we use type “AlphabeticString”. The reason for this should be clear: we’d like to
use TrieMap if possible!

To use a HashTrieMap, we need to jump through a few extra hoops, because the con-
structor takes an extra argument. We’ve provided a method for you in NGramTester called
trieConstructor which does this for you; it returns a Supplier which can be given directly
to WordSuggestor.

Now that you know what NGramToNextChoicesMap is supposed to do, implement the follow-
ing two methods:

There is a third method relevant to word suggestion called getWordsAfter which we have
partially implemented for you, but, for now, you should not implement it.

We recommend testing your implementation by using HashTrieMap since you already have
one that works.

(2) MoveToFrontList: Another Dictionary

In this part, you will implement MoveToFrontList, a new type of Dictionary.

For the remainder of the Dictionary classes you will implement, we will not ask you to
write delete–it is possible (and you can do it for extra credit), but it’s not educational
enough to be part of the actual project. As a result, your Dictionary classes will inherit

6



from DeletelessDictionary which is the same as Dictionary except it does not require
that you implement a delete method.

MoveToFrontList is a type of linked list where new items are inserted at the front of the
list, and an existing item gets moved to the front whenever it is referenced. Although it has
O(n) worst-case time operations, it has a very good amortized analysis. We will not discuss
this data structure in class.

MoveToFrontList relies on equality testing of elements. In Java, we deal with this by defining
an equals method. If you look in BString (the class that AlphabeticString and NGram

both inherit from), it relies on CircularArrayFIFOQueue having a reasonable definition of
equality. Before MoveToFrontList will work, you will need to define the equals method for
CircularArrayQueue. You may not use toString to implement equals; we expect you to
build it from scratch. You might be wondering how to figure out the type of the parameter
for equals; in Java, the equals method takes an Object. You will want to to do research
on the Java instanceof operator, as it will be a part of your solution.

In addition to equality testing, we also need to be able to compare two Objects. To do this,
you should complete the compareTo method in CircularArrayFIFOQueue. You may not use
toString to implement compareTo; we expect you to build it from scratch.

The reason we implement this is that our tree dictionaries in the next part will need to be
able to do comparisons instead of equality testing.

6 Part 1B: Implementing The Remaining Dictionary

Classes

(3) AVLTree: Another Another Dictionary

In this part, you will implement AVLTree. We recommend waiting to do this until we have
discussed it in lecture. Just like before, you do not have to implement delete. Your AVLTree
should be a sub-class of BinarySearchTree which we have written for you. Be careful to
not duplicate code. You should use an array implementation of left and right children
as in BinarySearchTree. Additionally, if your rotation code is repetitive, you will lose a
substantial amount of points.

Recall that all BSTs rely on a reasonable definition of comparison. Our BST and your
AVLTree will both rely on the compareTo that you wrote in the previous part.

7



(4) ChainingHashTable: Another Another Another Dictionary

In this part, you will implement ChainingHashTable. We recommend waiting to do this until
we have discussed it in lecture. Just like before, you do not have to implement delete. Your
hash table must use separate chaining–not probing. Furthermore, you must make the type of
chain generic. In particular, you should be able to use any dictionary implementation as the
type inside the buckets. Your HashTable should rehash as appropriate (use an appropriate
load factor as discussed in the class), and its capacity should be a prime number. Your
HashTable should be able to work with arbitrary client code which means there shouldn’t
be a hard cap on how much it can grow; though, we won’t enforce the requirement that the
size be a prime past 200,000.

Recall that all Hash Tables rely on a reasonable definition of hash code. Just like you needed
to define equals and compareTo for various other data structures, you will need to define
hashCode in CircularArrayFIFOQueue for ChainingHashTable. You may not use toString
to implement hashCode; we expect you to build it from scratch.

At some point, you will want to test various types of chains in your ChainingHashTable.
It is confusing to do this initially; so, we have provided some examples in the NGramTester

class.

(5) HashTrieMap: Full Circle!

Now that you have written your own hash map, replace the dependency on Java’s HashMap

with your ChainingHashTable!

You will want to look at the SimpleEntry javadoc: https://docs.oracle.com/javase/7/

docs/api/java/util/AbstractMap.SimpleEntry.html

You will likely have to add or change an iterator method to make this work correctly. This
is not only, okay, it’s a great example of unexpected refactoring. This may set off a chain
reaction where you also have to edit other code. Remember that you may edit any class that
is not in a cse332.* package.

In fact, you have now written pretty much all of the data structures that you’ve used from
Java’s library! You now understand all the magic under the hood! Take a minute to bask
in the glory that is data structures nirvana.

8



7 Part 2: Sorting and the Writeup

(6) MinFourHeap (Again?) and The Sorts

The MinFourHeap you wrote in p1 was only able to compare elements in a single way (based
on the compareTo). There is a more general idea called a Comparator which allows the
user to specify a comparison function. The first thing you should do in this part is edit your
MinFourHeap to use a comparator. You should edit the constructor to take a Comparator<E>

and the rest of your code to use that comparator in place of compareTo. This is necessary
to make the sorts (below) work.

After you’ve edited MinFourHeap, you will be ready to write the following sorting algorithms:

• HeapSort: Consists of two steps:

(1) Insert each element to be sorted into a heap (MinFourHeap)

(2) Remove each element from the heap, storing them in order in the original array.

• QuickSort: Implement quicksort. As with the other sorts, your code should be generic.
Your sorting algorithm should meet its expected runtime bound.

• TopKSort: An easy way to implement this would be to sort the input as usual and then
just print k largest of them. This approach finds the k largest items in time O(n lg n).
However, your implementation should have O(n lg k) runtime, assuming k is less than
or equal to n. Efficiently tracking the k largest will require a different comparator than
what you used in HeapSort. TopKSort should put the top k elements in the first k
spots in the array, and all the other indices should be null. In other words, if
A = quicksort(B) for some array B, then: topKSort(k,A) = [A[n − k], A[n − (k −
1)], . . . , A[n− 1], null, null, . . . , null].

Notice that inside NGramToNextChoicesMap, when you use TopKSort you will have to
use a different comparator than you used in HeapSort and you will need to modify the
result returned from the sort.

(Hint: Use a heap, but never put more than k elements into it. Think about why this
gives O(n lg k) runtime bound).

(7) Write-Up

Approximately half of your grade will be based on your write-up. The analysis part of this
project is incredibly important, and we expect you to spend an entire week’s worth of work
on it.

9



Some of the write-up questions will ask you to design and run some experiments to determine
which implementations are faster for various inputs. Answering these questions will require
writing additional code to run the experiments, collecting operation counting or timing
information and producing result tables and graphs, together with relatively long answers.
Do not wait until the last minute! We will post more information about the difference
between operation counting or timing.

Insert tables and graphs into your repository as appropriate, and be sure to give each one
a title and label the axes for the graphs. IMPORTANT: Place all your operation
counting or timing code into the package experiment. Be careful not to leave any
write-up related code in the normal files. To prevent losing points due to the modifications
made for the write-up experiments, you should copy all files that need to be modified for the
experiments into the package experiment, and start working from there. Files in different
packages can have the same name, but when editing be sure to check if you are using the
correct file! If your code does not compile because you did not follow these instructions, you
will receive a 0 for all automated tests.

You will need to write a second hashing function. To exaggerate the difference between the
two hash functions, you will want to compare a very simple hash function with a decent
one (the one used in Part 2). For all experimental results, we would like to see a detailed
interpretation, especially when the results do not match your expectations.

Please do not submit files in proprietary formats (xls, xlsx, doc, docx, odt, etc.) Directly
embedding the data in the markdown file is your best option; images for graphs are fine; csv
files are fine. The course staff may not necessarily have the programs you do–and, perhaps,
they might be running on a machine with no GUI.

8 Above and Beyond

DO NOT MIX any of your above and beyond files with the normal code. Before changing
your code for above and beyond, copy the relevant files into the aboveandbeyond package.
If your code does not compile because you did not follow these instructions, you will receive
a 0 for all automated tests.

• Completing the ADT : Implement the delete methods for all of the Dictionary classes.

• Alternate Hashing Strategies : Implement both closed and open addressing and perform
experimentation to compare performance. Also, design additional hashing functions
and determine which affects performance more: hashing cost, collision-avoidance cost,
or your addressing strategy.

10



• Randomized Hashing Implement a hash table that uses a “randomized family of hash
functions” instead of a single (deterministic) hash function. Talk to Robbie for refer-
ences on where to learn more.

• Introspective Sort : Introspective sort is an unstable quicksort variant which switches to
heapsort for inputs which would result in a O(n2) running-time for normal quicksort.
Thus, it has an average-case and a worst-case runtime of O(n lg n), but generally runs
faster than heapsort even in the worst case. Implement IntrospectiveSort, and give
a sample input which would result in a quadratic runtime for normal quicksort (using
a median-of-3 partitioning scheme).

• Alternate Text Generation Models : The n-gram model is relatively simple and has
some major drawbacks. You can do more interesting things instead. For example, you
might use a part-of-speech tagger to get the sentences to at least always be coherent.
Research more interesting text generation strategies, implement them, and discuss your
results.

11


