
CSE 332: Summer 18
Project 1: Zip

Above and Beyond

The problems in this file are not required. If you have finished Project 1 early, and would like more practice
with these concepts, the following suggestions may be interesting.

Recall that any extra credit you get by completing any of these suggestions is kept in a separate gradebook.
Extra credit will only be used to adjust grades near a grade boundary. It has a very small (or even no) affect
on your final grade.

If you’re worried about you’re grade, the best use of your time by far is the main project.

5



NUL

a

a

c

c

b

a

c

b NUL

NUL

a

a

c

c

b

NUL

a

a

a c

c

a b NUL

NUL

a

a

c

c

b

NUL

a

a

a c

c

NUL

a

a

c

c NUL

b a

NUL

a

a

a c

a b c NUL

T

T

T

T

T

T

T

T

T

T

T

Thus, to look for a word [a1, a2, ..., an] in a SuffixTrie, we look for [a1, a2, ..., an, null].

This data structure is useful for several reasons. First of all, it’s relatively compact (see above and beyond for
an even more compact version), because it avoids storing characters multiple times. Second of all, we can stop
the search for a piece of text as soon as the prefix doesn’t match!

Another reason that this data structure is interesting is that its easy to update. Imagine that our example word
aabcabccaa “shifted forward”. In other words, we removed the first character (“a”) and added on a new character
(“x”). To update the SuffixTrie, all we have to do is the following:

• Remove the key representing the entire word. (This is just a remove on the underlying TrieMap.)

• For each leaf in the tree, remove the null terminator and replace it with a new node:

NUL

x

T

It might not be clear why we remove old suffixes rather than continuing to add them, and, in fact, in a diferent
implementation, we might not remove them at all! In this implementation, we are more concerned about space
than keeping track of absolutely everything, and, so, we make this design trade-off.

Implementing SuffixTrie

In our implementation of a SuffixTrie, we will represent the suffixes of a fixed-size buffer. At all times, a
SuffixTrie must keep track of the following information:

• The current match (both the letters and the node where the match ended)

• The contents that the trie represents the suffixes of (a buffer of Bytes)

• The current leaves of the trie (to update when the contents advance forwards)

6



Your SuffixTrie must maintain this information by implementing the following interface:

public int startNewMatch(FIFOWorkList<Byte> buffer)

This method starts a new match from the root by consuming Bytes from the provided buffer as long as the
Bytes consumed represent a prefix of a key in this trie. The current node pointer (i.e., lastMatchedNode)
in the trie should also be updated. This method should return the length of the match if the match is a
complete key in the trie. Otherwise, return zero. (That is, if it is a proper prefix of a key in the trie or the
empty string, it should return 0.) This method should make sure to leave room in the match buffer for one
more Byte.

For example, in the trie above, the following would be the original buffer, the match consumed, and the
remaining buffer:

Original Buffer Match WorkList Remaining Buffer Return Value

← a b c ← ← a b c ← ← ← 0

← a a a ← ← a a ← ← a ← 2

← c c a b b ← ← c c a ← ← b b ← 0

public void addToMatch(Byte b)

Appends b to the current match. The current node pointer in the trie should not be updated.

public FIFOWorkList<Byte> getMatch()

Returns a deep copy of the stored match. That is, the client should not be able to update the field using
the return value.

public int getDistanceToLeaf()

Returns the distance from the end of the current match to a leaf. If the match was complete, this method
should return 0. Otherwise, it should return the number of (non-terminator) characters to some leaf. It is
more important that this method be efficient than that it return a particular leaf. To do this, you should
get any element of the pointers map. Your code to do this will look something like:

node.pointers.values().iterator().next()

public void advance()

This method advances the contents of the trie using the found match. For each Byte b in match, it should
remove the whole word from the trie and append b to the end of every stored word. This is the algorithm
described above to advance suffixes applied to an entire buffer. Note that if the stored contents are not yet
full, we do not shift anything off. Note that the ordering between removal and appending (that is, removal
is first) does matter.

public void clear()

This method should reset the state of the trie to the same as right after it was originally constructed.

See the next page for an example of advance in action.

7



An advanced Example

Here is an example of advance in action. Suppose that we begin with the following settings:

(max) size: 3

currentMatch: ← a a b a ←

contents: ← ←

words: {“”}

trie:
NUL

T

A single step of advance() (1):

For each leaf, we replace the NUL with the new char-
acter (here, ’a’) followed by a NUL. Then, we add the
empty string back into the trie.

currentMatch: ← a b a ←

contents: ← a ←

words: {“a”, “”}

trie:

NUL

a NUL

T

T

A single step of advance() (2):

currentMatch: ← b a ←

contents: ← a a ←

words: {“aa”, “a”, “”}

trie:

NUL

a NUL

a NUL

T

T

T

A single step of advance() (3):

currentMatch: ← a ←

contents: ← a a b ←

words: {“aab”, “ab”, “b”, “”}

trie:

NUL

b NUL

a b NUL

a b NUL

T

T

T

T

A single step of advance() (4):

This time we hit capacity. So, we remove “aab[null]”
from the trie before extending the existing words.

currentMatch: ← ←

contents: ← a b a ←

words: {“aba”, “ba”, “a”, “”}

trie:

NUL

a

b NUL

NUL

a

a b NUL

T

T

T

T

8



Above and Beyond (continued)

RandomizedWorkList

RandomizedWorkList is a WorkList which returns all of its elements in a random order. This type of WorkList
can be useful if you want a random subset of the items in the WorkList. For example, you could generate some
random permutations to re-order the lines of a text file. We discuss two algorithms for RandomizedWorkList:
one that doesn’t work and one that does. You should think about why the Naïve Algorithm doesn’t work before
implementing the second algorithm.

We assume that we know in advance how many items the RandomizedWorkList will need to hold. So, it should
implement the WorkList interface.

A Naïve Algorithm

To add the ith item work:

• If the buffer isn’t full, add work to the end of the buffer.

• Otherwise, choose a random slot (each with equal probability) in the buffer and replace it with work

Reservoir Sampling

To add the ith item work:

• If the buffer isn’t full, add work to the end of the buffer.

• Otherwise, choose a random number, j, from 0 to i. If j is a valid index in the buffer, replace the item at
that index with work.

Client Contract

If the client calls next(), your implementation should throw an IllegalStateException on all future calls to
add.

CompressedHashTrieMap and CompressedSuffixTrie

CompressedHashTrieMap is an implementation of a HashTrieMap which compresses together nodes that only
have a single branch. For example, if the trie only had “adds” and “adam”, then it’s redundant to store ‘d’, ‘s’,
‘a’, and ‘m’ in separate nodes. It would be better to store a single node for “ds” and a single node for “am”. This
will make the zip compression substantially faster if used as the underlying structure in SuffixTrie.

9


