
CSE 332: Data Structures and Parallelism

QuickCheck: Dijkstra's Algorithm Solutions

0. Velociraptors

Consider the following graph:

Suppose that you are at **a** and you are planning your escape from a bunch of hungry velociraptors (edge weights represent the expected number of velociraptors you will meet on this path). Run Dijkstra's Algorithm to find the **lengths** of the shortest paths (fewest number of velociraptors met) from **a** to each of the other vertices. Remember to store the path variable and list the order vertices are added to the known set.

C		on:
		nn
50	սսս	UII .

Vertex	Known	Cost of Path		Path		
а	True	0				
b	True	∞	8		а	
с	True	∞	16	11	a	d
d	True	∞	50	9	a	е
е	True	∞	13	4	a	f
f	True	∞	1		а	

Order added to known set: a, f, e, b, d, c

Vertex	Known	Cost of Path	Path
а			
b			
с			
d			
е			
f			

Order added to known set: