CSE 332: Data Structures & Parallelism
Lecture 22: Minimum Spanning Trees

Ruth Anderson
Autumn 2018
Minimum Spanning Trees

Given an undirected graph $G=(V,E)$, find a graph $G'=(V, E')$ such that:

- E' is a subset of E
- $|E'| = |V| - 1$
- G' is connected

G’ is a minimum spanning tree.

Applications:

- Example: Electrical wiring for a house or clock wires on a chip
- Example: A road network if you cared about asphalt cost rather than travel time

$$\sum_{(u,v) \in E'} c_{uv}$$ is minimal
Student Activity

Find the MST
Two Different Approaches

Prim’s Algorithm
Almost identical to Dijkstra’s

Kruskals’s Algorithm
Completely different!
Prim’s algorithm

Idea: Grow a tree by picking a vertex from the unknown set that has the smallest cost. Here cost = cost of the edge that connects that vertex to the known set. *Pick the vertex with the smallest cost that connects “known” to “unknown.”*

A node-based greedy algorithm

Builds MST by greedily adding nodes
Prim’s Algorithm vs. Dijkstra’s

Recall:

Dijkstra picked the unknown vertex with smallest cost where
\[\text{cost} = \text{distance to the source}. \]

Prim’s pick the unknown vertex with smallest cost where
\[\text{cost} = \text{distance from this vertex to the known set} \] (in other words, the cost of the smallest edge connecting this vertex to the known set)

- Otherwise identical
- Compare to slides in Dijkstra lecture!
Prim’s Algorithm for MST

1. For each node v, set $v\text{.cost} = \infty$ and $v\text{.known} = \text{false}$
2. Choose any node v. (this is like your “start” vertex in Dijkstra)
 a) Mark v as known
 b) For each edge (v, u) with weight w:
 set $u\text{.cost} = w$ and $u\text{.prev} = v$
3. While there are unknown nodes in the graph
 a) Select the unknown node v with lowest cost
 b) Mark v as known and add $(v, v\text{.prev})$ to output (the MST)
 c) For each edge (v, u) with weight w,

 \[\text{if}(w < u\text{.cost}) \{
 u\text{.cost} = w;
 u\text{.prev} = v;
 \} \]
Example: Find MST using Prim’s

Order added to known set:

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Find MST using Prim’s

Start with V_1

<table>
<thead>
<tr>
<th>V</th>
<th>Kwn</th>
<th>Distance</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Order Declared Known:

V_1

Total Cost:
Prim’s Analysis

• Correctness ??
 – A bit tricky
 – Intuitively similar to Dijkstra
 – Might return to this time permitting (unlikely)

• Run-time
 – Same as Dijkstra
 – $O(|E| \log |V|)$ using a priority queue
Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.
Kruskal’s Algorithm for MST

An edge-based greedy algorithm
Builds MST by greedily adding edges

1. Initialize with
 • empty MST
 • all vertices marked unconnected
 • all edges unmarked

2. While all vertices are not connected
 a. Pick the lowest cost edge (u, v) and mark it
 b. If u and v are not already connected, add (u, v) to the MST and mark u and v as connected to each other
Aside: Union-Find aka Disjoint Set ADT

- **Union(x,y)** – take the union of two sets named x and y
 – Given sets: {3,5,7}, {4,2,8}, {9}, {1,6}
 – **Union(5,1)**
 Result: {3,5,7,1,6}, {4,2,8}, {9},
 To perform the union operation, we replace sets x and y by \((x \cup y)\)

- **Find(x)** – return the name of the set containing x.
 – Given sets: {3,5,7,1,6}, {4,2,8}, {9},
 – **Find(1)** returns 5
 – **Find(4)** returns 8

- We can do Union in constant time.
- We can get Find to be *amortized* constant time
 (worst case \(O(\log n)\) for an individual Find operation).
Kruskal’s pseudo code

```c
void Graph::kruskal()
{
    int edgesAccepted = 0;
    DisjSet s(NUM_VERTICES);

    while (edgesAccepted < NUM_VERTICES - 1){
        e = smallest weight edge not deleted yet;
        // edge e = (u, v)
       uset = s.find(u);
        vset = s.find(v);
        if (uset != vset){
            edgesAccepted++;
            s.unionSets(uset, vset);
        }
    }
}
```
Example: Find MST using Kruskal’s

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest
Find MST using Kruskal’s

• Now find the MST using Prim’s method.
• Under what conditions will these methods give the same result?
Correctness

Kruskal’s algorithm is clever, simple, and efficient
 – But does it generate a minimum spanning tree?
 – How can we prove it?

First: it generates a spanning tree
 – Intuition: Graph started connected and we added every edge that did not create a cycle
 – Proof by contradiction: Suppose u and v are disconnected in Kruskal’s result. Then there’s a path from u to v in the initial graph with an edge we could add without creating a cycle. But Kruskal would have added that edge. Contradiction.

Second: There is no spanning tree with lower total cost…
The inductive proof set-up

Let F (stands for “forest”) be the set of edges Kruskal has added at some point during its execution.

Claim: F is a subset of one or more MSTs for the graph (Therefore, once $|F|=|V|-1$, we have an MST.)

Proof: By induction on $|F|

Base case: $|F|=0$: The empty set is a subset of all MSTs

Inductive case: $|F|=k+1$: By induction, before adding the $(k+1)^{th}$ edge (call it e), there was some MST T such that $F\setminus\{e\} \subseteq T$ …
Staying a subset of some MST

Claim: F is a subset of *one or more* MSTs for the graph

So far: $F\setminus\{e\} \subseteq T$:

Two disjoint cases:
- If $\{e\} \subseteq T$: Then $F \subseteq T$ and we’re done
- Else e forms a cycle with some simple path (call it p) in T
 - Must be since T is a spanning tree
Staying a subset of some MST

Claim: F is a subset of one or more MSTs for the graph

So far: \(F-\{e\} \subseteq T \) and \(e \) forms a cycle with \(p \subseteq T \)

- There must be an edge \(e_2 \) on \(p \) such that \(e_2 \) is not in \(F \)
 - Else Kruskal would not have added \(e \)

- Claim: \(e_2\.weight == e\.weight \)
Staying a subset of some MST

Claim: \(F \) is a subset of one or more MSTs for the graph

So far: \(F-\{e\} \subseteq T \)
- \(e \) forms a cycle with \(p \subseteq T \)
- \(e2 \) on \(p \) is not in \(F \)

• Claim: \(e2\text{.weight} == e\text{.weight} \)
 - If \(e2\text{.weight} > e\text{.weight} \), then \(T \) is not an MST because \(T-\{e2\}+\{e\} \) is a spanning tree with lower cost: contradiction
 - If \(e2\text{.weight} < e\text{.weight} \), then Kruskal would have already considered \(e2 \). It would have added it since \(T \) has no cycles and \(F-\{e\} \subseteq T \). But \(e2 \) is not in \(F \): contradiction
Staying a subset of some MST

Claim: \(F \) is a subset of one or more MSTs for the graph

So far: \(F-\{e\} \subseteq T \)
- \(e \) forms a cycle with \(p \subseteq T \)
- \(e_2 \) on \(p \) is not in \(F \)
- \(e_2.\text{weight} == e.\text{weight} \)

- Claim: \(T-\{e_2\}+\{e\} \) is an MST
 - It’s a spanning tree because \(p-\{e_2\}+\{e\} \) connects the same nodes as \(p \)
 - It’s minimal because its cost equals cost of \(T \), an MST

- Since \(F \subseteq T-\{e_2\}+\{e\} \), \(F \) is a subset of one or more MSTs
Done.