

# CSE 332: Data Structures & Parallelism Lecture 10:Hashing

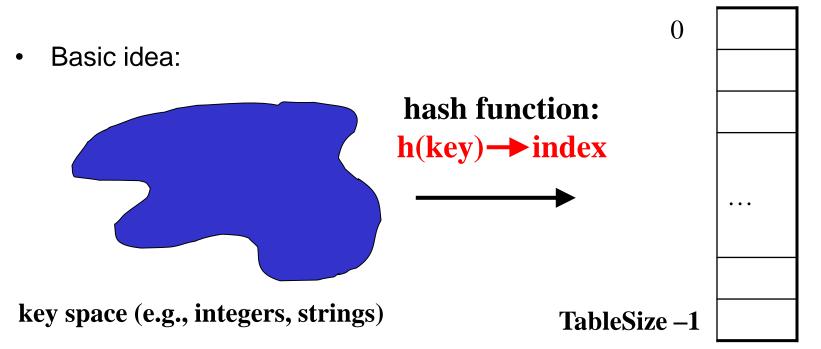
Ruth Anderson Autumn 2018

## Today

- Dictionaries
  - Hashing

## Motivating Hash Tables

For dictionary with *n* key/value pairs


|   |                      | insert                | find                  | delete                |
|---|----------------------|-----------------------|-----------------------|-----------------------|
| • | Unsorted linked-list | O( <i>n</i> ) *       | O( <i>n</i> )         | <i>O</i> ( <i>n</i> ) |
| ٠ | Unsorted array       | O(n) *                | <i>O</i> ( <i>n</i> ) | <i>O</i> ( <i>n</i> ) |
| • | Sorted linked list   | <i>O</i> ( <i>n</i> ) | O( <i>n</i> )         | O( <i>n</i> )         |
| • | Sorted array         | <i>O</i> ( <i>n</i> ) | 0(log <i>n</i> )      | <i>O</i> ( <i>n</i> ) |
| • | Balanced tree        | 0(log <i>n</i> )      | 0(log                 | 0(log                 |

\* Assuming we must check to see if the key has already been inserted. Cost becomes cost of a find operation, inserting itself is O(1).

## Hash Tables

- Aim for constant-time (i.e., O(1)) find, insert, and delete
   "On average" under some reasonable assumptions
- A hash table is an array of some fixed size





## Aside: Hash Tables vs. Balanced Trees

- In terms of a Dictionary ADT for just **insert**, **find**, **delete**, hash tables and balanced trees are just different data structures
  - Hash tables O(1) on average (assuming few collisions)
  - Balanced trees O(log n) worst-case
- Constant-time is better, right?
  - Yes, but you need "hashing to behave" (must avoid collisions)
  - Yes, but what if we want to findMin, findMax, predecessor, and successor, printSorted?
    - Hashtables are not designed to efficiently implement these operations
    - Your textbook considers Hash tables to be a different ADT
    - Not so important to argue over the definitions

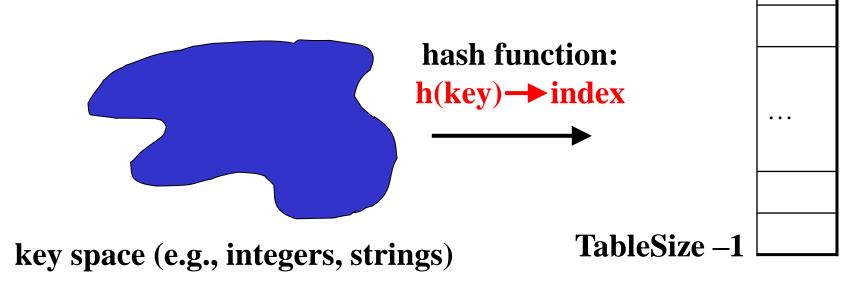
## Hash Tables

- There are *m* possible keys (*m* typically large, even infinite)
- We expect our table to have only *n* items
- *n* is much less than *m* (often written *n* << *m*)

Many dictionaries have this property

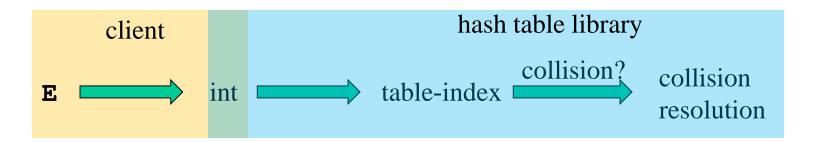
- Compiler: All possible identifiers allowed by the language vs.
   those used in some file of one program
- Database: All possible student names vs. students enrolled
- AI: All possible chess-board configurations vs. those considered by the current player

— ...


## Hash functions

An ideal hash function:

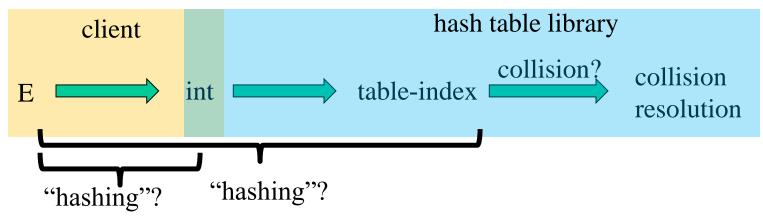
- Is fast to compute
- "Rarely" hashes two "used" keys to the same index
  - Often impossible in theory; easy in practice
  - Will handle collisions a bit later




0



## Who hashes what?


- Hash tables can be generic
  - To store keys of type  $\mathbf{E}$ , we just need to be able to:
    - 1. Test equality: are you the  $\mathbf{E}$  I'm looking for?
    - 2. Hashable: convert any **E** to an **int**
- When hash tables are a reusable library, the division of responsibility generally breaks down into two roles:



• We will learn both roles, but most programmers "in the real world" spend more time as clients while understanding the library

## More on roles

Some ambiguity in terminology on which parts are "hashing"



Two roles must both contribute to minimizing collisions (heuristically)

- Client should aim for different ints for expected items
  - Avoid "wasting" any part of E or the 32 bits of the int
- Library should aim for putting "similar" ints in different indices
  - conversion to index is almost always "mod table-size"
  - using prime numbers for table-size is common

## What to hash?

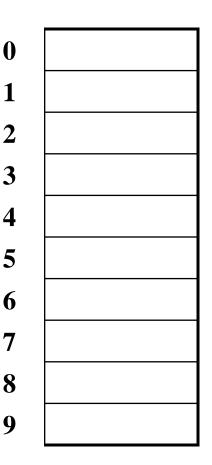
- We will focus on two most common things to hash: ints and strings
- If you have objects with several fields, it is usually best to have most of the "identifying fields" contribute to the hash to avoid collisions
- Example:

```
class Person {
   String first; String middle; String last;
   Date birthdate;
}
```

- An inherent trade-off: hashing-time vs. collision-avoidance
  - Use all the fields?
  - Use only the birthdate?
  - − Admittedly, what-to-hash is often an unprincipled guess ⊗

## Hashing integers

key space = integers


Simple hash function:

h(key) = key % TableSize

- Client: f(x) = x
- Library g(x) = f(x) % TableSize
- Fairly fast and natural

Example:

- TableSize = 10
- Insert 7, 18, 41, 34, 10
- (As usual, ignoring corresponding data)



#### Collision-avoidance

- With "x % TableSize" the number of collisions depends on
  - the ints inserted (obviously)
  - TableSize
- Larger table-size tends to help, but not always
  - Example: 70, 24, 56, 43, 10
     with TableSize = 10 and TableSize = 60
- Technique: Pick table size to be prime. Why?
  - Real-life data tends to have a pattern
  - "Multiples of 61" are probably less likely than "multiples of 60"
  - We'll see some collision strategies do better with prime size

## More arguments for a prime table size

If TableSize is 60 and...

- Lots of keys are multiples of 5, wasting 80% of table
- Lots of keys are multiples of 10, wasting 90% of table
- Lots of keys are multiples of 2, wasting 50% of table

If TableSize is 61...

- Collisions can still happen, but 5, 10, 15, 20, ... will fill table
- Collisions can still happen but 10, 20, 30, 40, ... will fill table
- Collisions can still happen but 2, 4, 6, 8, ... will fill table

In general, if x and y are "co-prime" (means gcd(x, y) ==1), then

(a \* x) % y == (b \* x) % y if and only if a % y == b % y

- Given table size y and keys as multiples of x, we'll get a decent distribution if x & y are co-prime
- So good to have a **TableSize** that has no common factors with any "likely pattern" **x**

## What if the key is not an int?

- If keys aren't ints, the client must convert to an int
  - Trade-off: speed and distinct keys hashing to distinct ints
- Common and important example: Strings
  - Key space  $K = s_0 s_1 s_2 \dots s_{m-1}$ 
    - where  $s_i$  are chars:  $s_i \in [0,256]$
  - Some choices: Which avoid collisions best?

1. 
$$h(K) = s_0$$

2. 
$$h(K) = \left(\sum_{i=0}^{m-1} S_i\right)$$

3. h(K) = 
$$\left(\sum_{i=0}^{m-1} s_i \cdot 37^i\right)$$

Then on the **library** side we typically mod by Tablesize to find index into the table

### Specializing hash functions

How might you hash differently if all your strings were web addresses (URLs)?

## Aside: Combining hash functions

A few rules of thumb / tricks:

- 1. Use all 32 bits (careful, that includes negative numbers)
- 2. Use different overlapping bits for different parts of the hash
  - This is why a factor of 37<sup>i</sup> works better than 256<sup>i</sup>
- 3. When smashing two hashes into one hash, use bitwise-xor
  - bitwise-and produces too many 0 bits
  - bitwise-or produces too many 1 bits
- 4. Rely on expertise of others; consult books and other resources
- 5. If keys are known ahead of time, choose a *perfect hash*

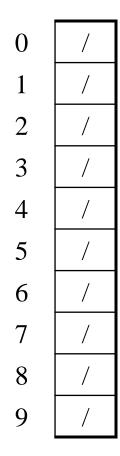
## Collision resolution

Collision:

When two keys map to the same location in the hash table

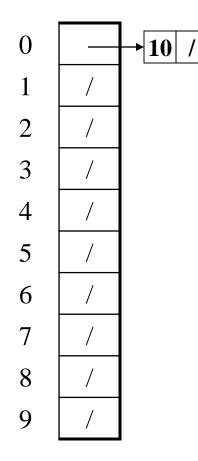
We try to avoid it, but number-of-possible-keys exceeds table size

So hash tables should support collision resolution


– Ideas?

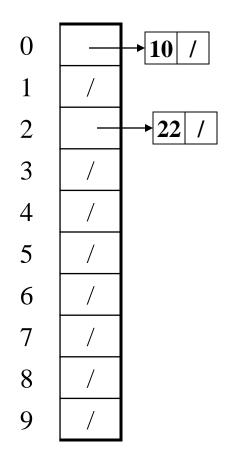
## Flavors of Collision Resolution

Separate Chaining


**Open Addressing** 

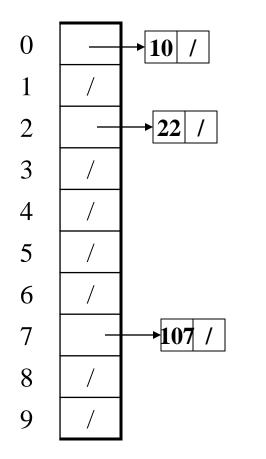
- Linear Probing
- Quadratic Probing
- Double Hashing




Chaining: All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

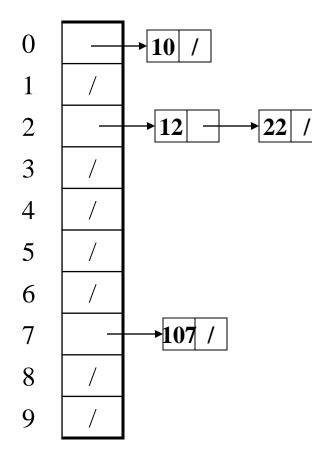
As easy as it sounds




Chaining: All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

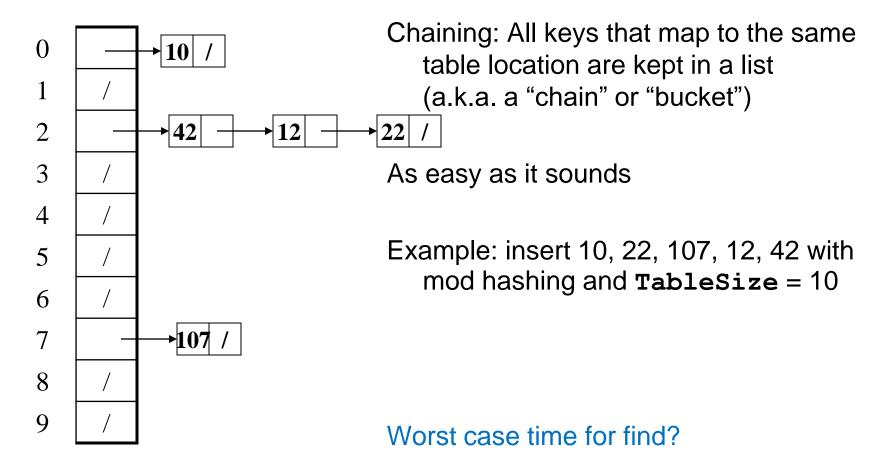
As easy as it sounds




Chaining: All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds



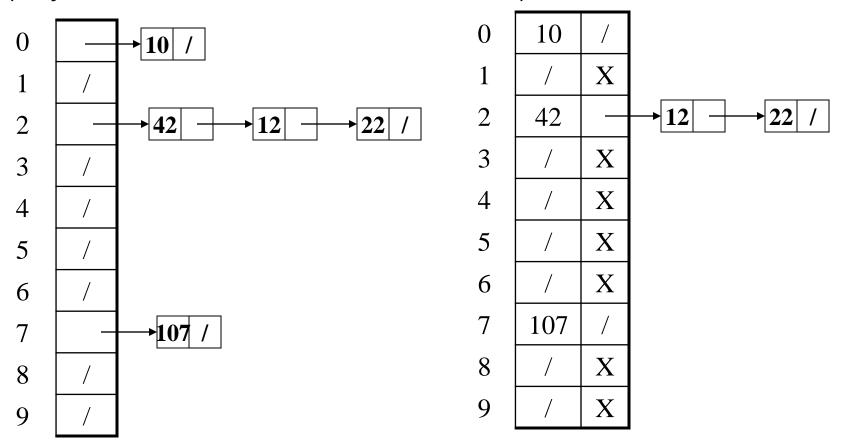

Chaining: All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds



Chaining: All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds




## Thoughts on separate chaining

- Worst-case time for **find**?
  - Linear
  - But only with really bad luck or bad hash function
  - So not worth avoiding (e.g., with balanced trees at each bucket)
    - Keep # of items in each bucket small
    - Overhead of AVL tree, etc. not worth it for small n
- Beyond asymptotic complexity, some "data-structure engineering" can improve constant factors
  - Linked list vs. array or a hybrid of the two
  - Move-to-front (part of Project 2)
  - Leave room for 1 element (or 2?) in the table itself, to optimize constant factors for the common case
    - A time-space trade-off...

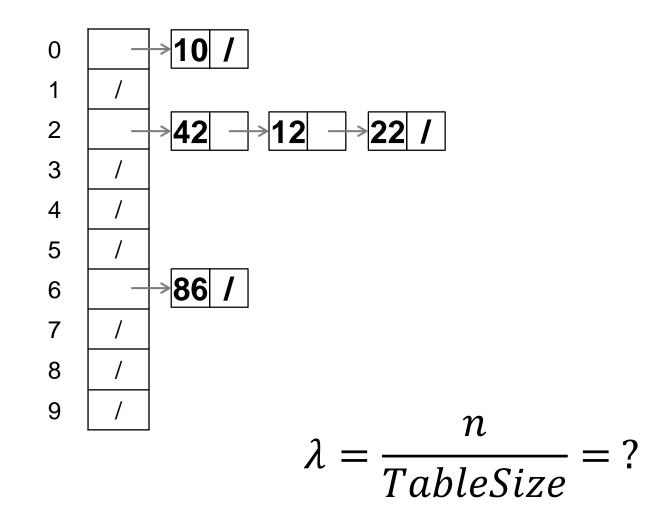
### Time vs. space

(only makes a difference in constant factors)

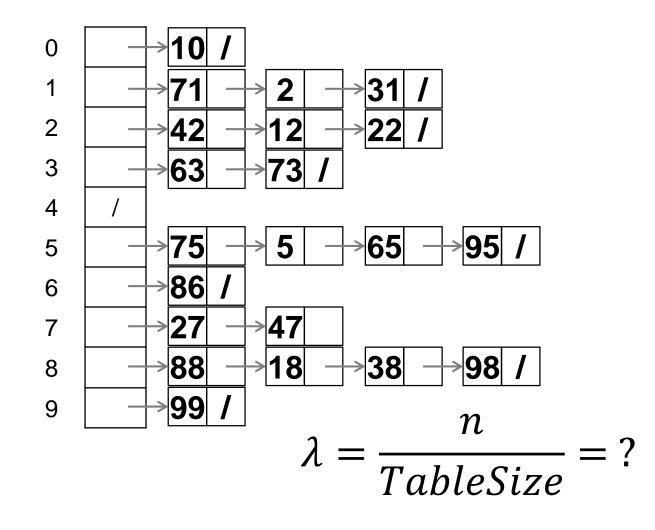


#### More rigorous separate chaining analysis

Definition: The load factor,  $\lambda$ , of a hash table is


$$\lambda = \frac{N}{TableSize} \quad \leftarrow number of elements$$

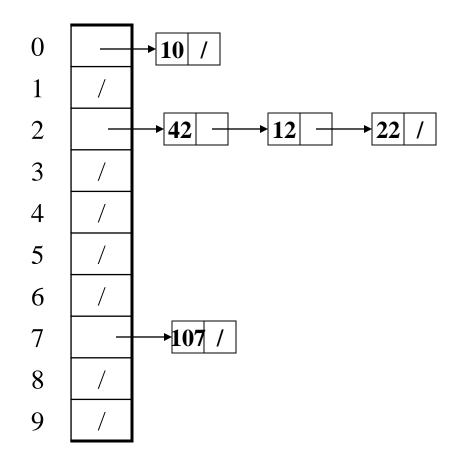
Under chaining, the average number of elements per bucket is \_\_\_\_\_


So if some inserts are followed by *random* finds, then on average:

- Each unsuccessful find compares against \_\_\_\_\_ items
- Each successful **find** compares against \_\_\_\_\_ items
- How big should TableSize be??

#### Load Factor?




### Load Factor?



#### Separate Chaining Deletion?

## Separate Chaining Deletion

- Not too bad
  - Find in table
  - Delete from bucket
- Say, delete 12
- Similar run-time as insert

