

CSE 332: Data Structures & Parallelism

Lecture 7: Dictionaries; Binary Search Trees

Ruth Anderson Autumn 2018

Today

- Dictionaries
- Trees

Where we are

Studying the absolutely essential ADTs of computer science and classic data structures for implementing them

ADTs so far:

```
1. Stack: push, pop, isEmpty, ...
```

2. Queue: enqueue, dequeue, isEmpty, ...

3. Priority queue: insert, deleteMin, ...

Next:

- 4. Dictionary (a.k.a. Map): associate keys with values
 - probably the most common, way more than priority queue

The Dictionary (a.k.a. Map) ADT

Data:

- set of (key, value) pairs
- keys must be comparable

Operations:

- insert(key,val):
 - places (key,val) in map (If key already used, overwrites existing entry)
- find(key):
 - returns val associated with key
- delete(key)

insert (rea, Ruth Anderson)

find (jhsia)

Justin Hsia,...

Ruth

rea

Anderson

jhsia Justin Hsia

We will tend to emphasize the keys, but don't forget about the stored values!

Comparison: Set ADT vs. Dictionary ADT

The Set ADT is like a Dictionary without any values

A key is *present* or not (no repeats)

For find, insert, delete, there is little difference

- In dictionary, values are "just along for the ride"
- So same data-structure ideas work for dictionaries and sets
 - Java HashSet implemented using a HashMap, for instance

Set ADT may have other important operations

- union, intersection, is_subset, etc.
- Notice these are binary operators on sets
- We will want different data structures to implement these operators

A Modest Few Uses for Dictionaries

Any time you want to store information according to some key and be able to retrieve it efficiently – a dictionary is the ADT to use!

– Lots of programs do that!

Networks: router tables

Operating systems: page tables

Compilers: symbol tables

Databases: dictionaries with other nice properties

Search: inverted indexes, phone directories, ...

Biology: genome maps

• ...

Simple implementations

For dictionary with *n* key/value pairs

insert find delete

- Unsorted linked-list
- Unsorted array
- Sorted linked list
- Sorted array

We'll see a Binary Search Tree (BST) probably does better, but not in the worst case unless we keep it balanced

Lazy Deletion (e.g. in a sorted array)

10	12	24	30	41	42	44	45	50
✓	×	✓	✓	✓	\	*	\	✓

A general technique for making delete as fast as find:

- Instead of actually removing the item just mark it deleted
- No need to shift values, etc.

Plusses:

- Simpler
- Can do removals later in batches
- If re-added soon thereafter, just unmark the deletion

Minuses:

- Extra space for the "is-it-deleted" flag
- Data structure full of deleted nodes wastes space
- find $O(\log m)$ time where m is data-structure size (m >= n)
- May complicate other operations

Better Dictionary data structures

Will spend the next several lectures looking at dictionaries with three different data structures

1. AVL trees

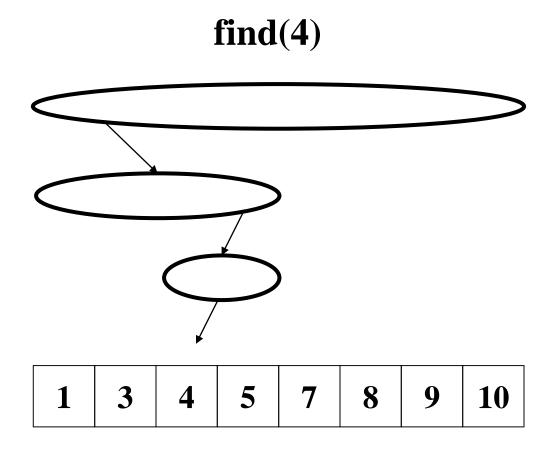
Binary search trees with guaranteed balancing

2. B-Trees

- Also always balanced, but different and shallower
- B!=Binary; B-Trees generally have large branching factor

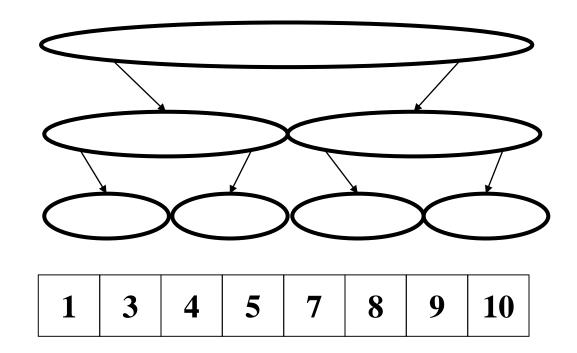
3. Hashtables

Not tree-like at all


Skipping: Other balanced trees (red-black, splay)

Why Trees?

Trees offer speed ups because of their branching factors


Binary Search Trees are structured forms of binary search

Binary Search

Binary Search Tree

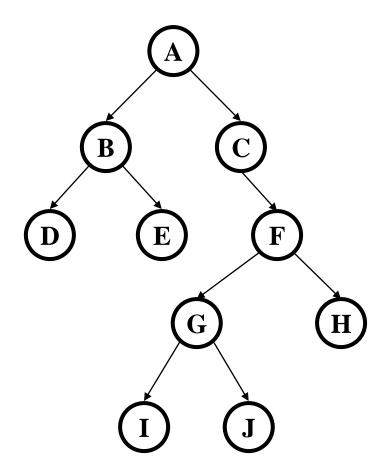
Our goal is the performance of binary search in a tree representation

Why Trees?

Trees offer speed ups because of their branching factors

Binary Search Trees are structured forms of binary search

Even a basic BST is fairly good


	Insert	Find	Delete
Worse-Case	O(n)	O(n)	O(n)
Average-Case	O(log n)	O(log n)	O(log n)

Binary Trees

- Binary tree is empty or
 - a root (with data)
 - a left subtree (maybe empty)
 - a right subtree (maybe empty)
- Representation:

Data				
left pointer	right pointer			

 For a dictionary, data will include a key and a value

Binary Tree: Some Numbers

Recall: height of a tree = longest path from root to leaf (count # of edges)

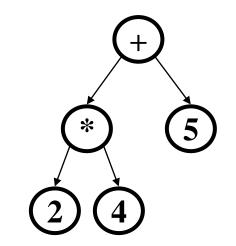
For binary tree of height *h*:

- max # of leaves:
- max # of nodes:
- min # of leaves:
- min # of nodes:

Calculating height

What is the height of a tree with root root?

```
int treeHeight(Node root) {
     ???
}
```


Tree Traversals

A traversal is an order for visiting all the nodes of a tree

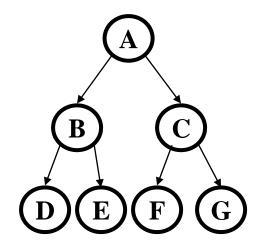
• Pre-order. root, left subtree, right subtree

• *In-order*: left subtree, root, right subtree

• Post-order. left subtree, right subtree, root

(an expression tree)

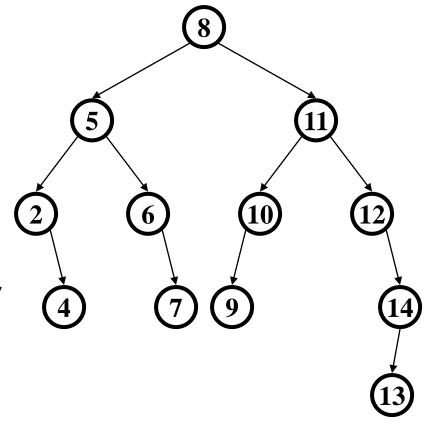
More on traversals

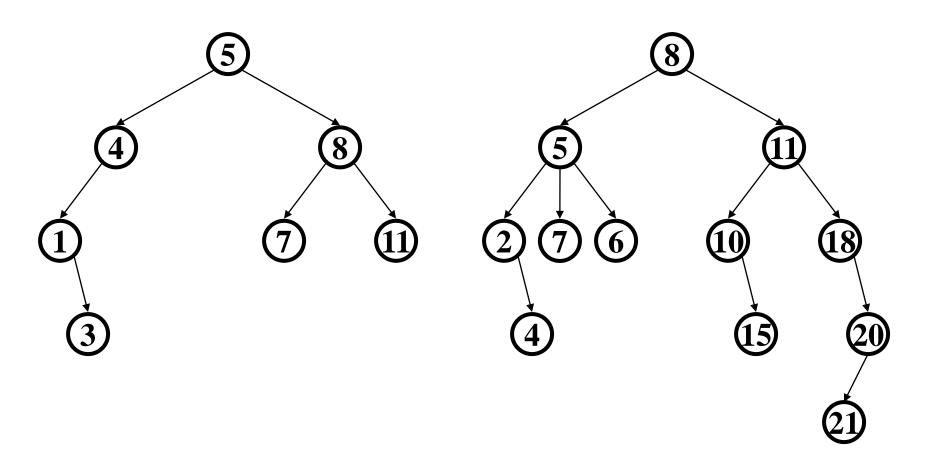

```
void inOrdertraversal(Node t) {
  if(t != null) {
    traverse(t.left);
    process(t.element);
    traverse(t.right);
  }
}
```

Sometimes order doesn't matter

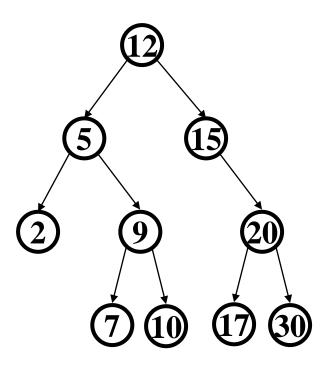
Example: sum all elements

Sometimes order matters

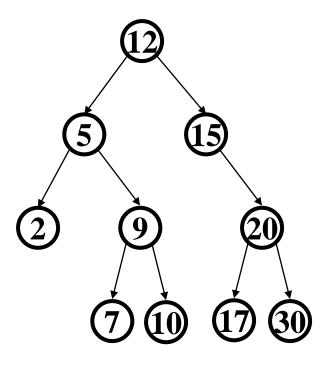

- Example: print tree with parent above indented children (pre-order)
- Example: evaluate an expression tree (post-order)


```
B D E C F G
```

Binary Search Tree

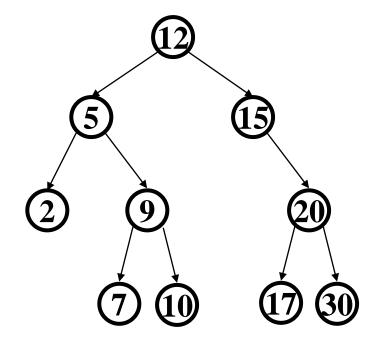

- Structural property ("binary")
 - each node has ≤ 2 children
 - result: keeps operations simple
- Order property
 - all keys in left subtree smaller than node's key
 - all keys in right subtree larger than node's key
 - result: easy to find any given key

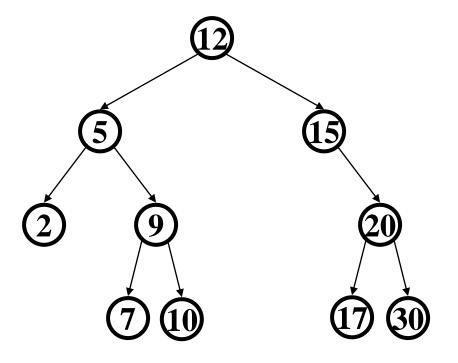
Are these BSTs?



Find in BST, Recursive


```
Data find(Key key, Node root) {
  if(root == null)
    return null;
  if(key < root.key)
    return find(key,root.left);
  if(key > root.key)
    return find(key,root.right);
  return root.data;
}
```

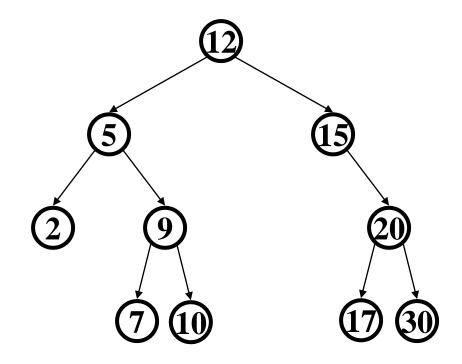

Find in BST, Iterative


```
Data find(Key key, Node root) {
  while(root != null
          && root.key != key) {
    if(key < root.key)
        root = root.left;
  else(key > root.key)
        root = root.right;
  }
  if(root == null)
    return null;
  return root.data;
}
```

Other "finding operations"

- Find minimum node
- Find maximum node

Insert in BST

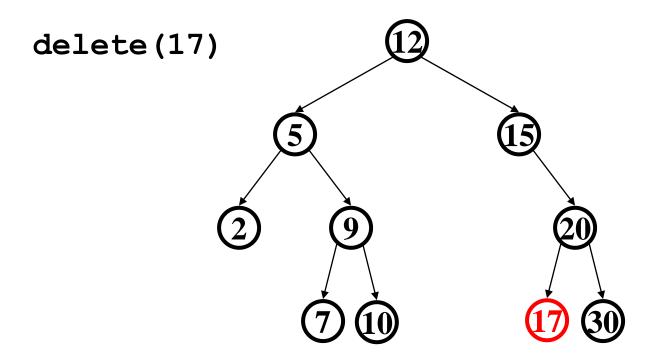


insert(13)
insert(8)
insert(31)

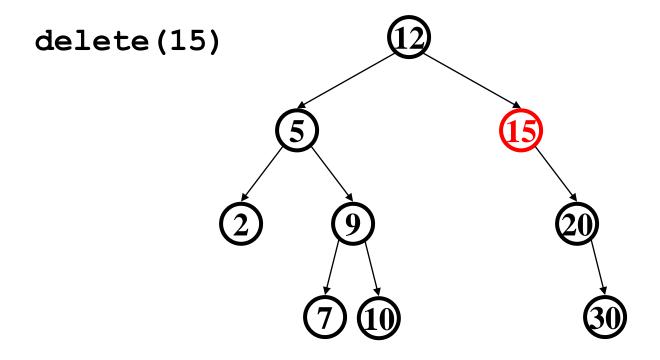
(New) insertions happen only at leaves – easy!

- 1. Find
- 2. Create a new node

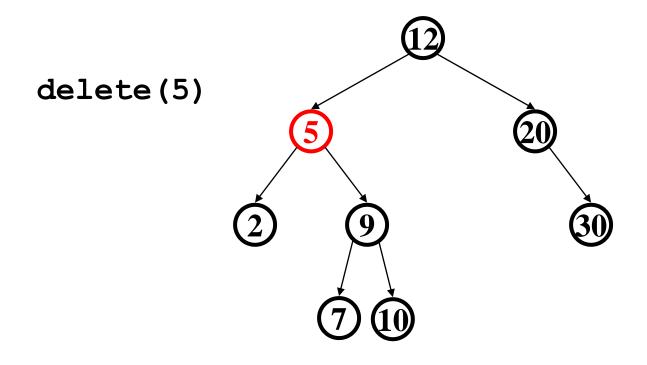
Deletion in BST



Why might deletion be harder than insertion?


Deletion

- Removing an item disrupts the tree structure
- Basic idea:
 - find the node to be removed,
 - Remove it
 - "fix" the tree so that it is still a binary search tree
- Three cases:
 - node has no children (leaf)
 - node has one child
 - node has two children


Deletion – The Leaf Case

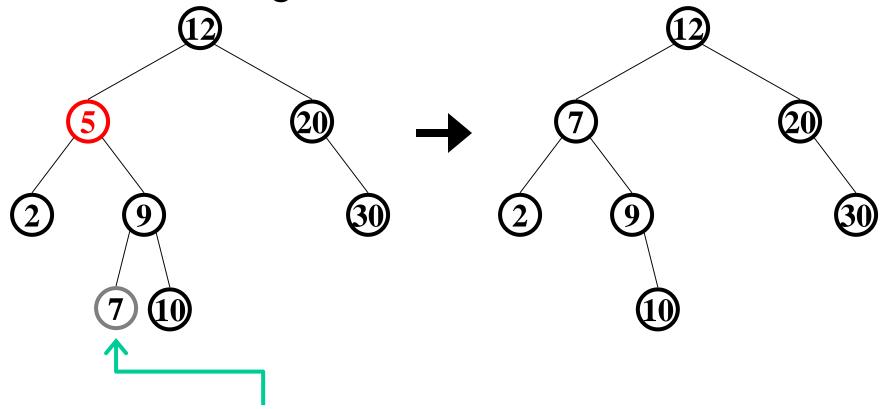
Deletion - The One Child Case

Deletion - The Two Child Case

What can we replace 5 with?

Deletion – The Two Child Case

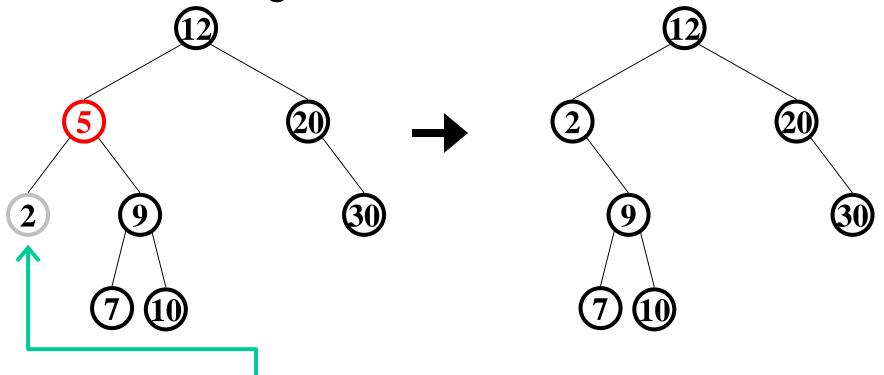
Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees


Options:

- successor from right subtree: findMin(node.right)
- predecessor from left subtree: findMax(node.left)
 - These are the easy cases of predecessor/successor

Now delete the original node containing *successor* or *predecessor*

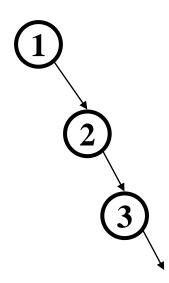
Leaf or one child case – easy cases of delete!


Delete Using Successor

findMin(right sub tree) \rightarrow 7

delete(5)

Delete Using Predecessor



 $findMax(left sub tree) \rightarrow 2$

delete(5)

BuildTree for BST

- We had buildHeap, so let's consider buildTree
- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
 - If inserted in given order, what is the tree?
 - What big-O runtime for this kind of sorted input?
 - Is inserting in the reverse order any better?

Balanced BST

Observation

- BST: the shallower the better!
- For a BST with *n* nodes inserted in arbitrary order
 - Average height is $O(\log n)$ see text for proof
 - Worst case height is O(n)
- Simple cases such as inserting in key order lead to the worst-case scenario

Solution: Require a Balance Condition that

- 1. ensures depth is always $O(\log n)$ strong enough!
- is easy to maintain not too strong!

Potential Balance Conditions

 Left and right subtrees of the root have equal number of nodes

 Left and right subtrees of the root have equal height

Potential Balance Conditions

3. Left and right subtrees of every node have equal number of nodes

4. Left and right subtrees of every node have equal *height*

The AVL Balance Condition

Left and right subtrees of *every node* have *heights* **differing by at most 1**

Definition: balance(node) = height(node.left) - height(node.right)

AVL property: for every node x, $-1 \le balance(x) \le 1$

- Ensures small depth
 - Will prove this by showing that an AVL tree of height h must have a number of nodes exponential in h
- Easy (well, efficient) to maintain
 - Using single and double rotations