

CSE332: Data Structures & Parallelism Lecture 2: Algorithm Analysis

Ruth Anderson Autumn 2018

Today – Algorithm Analysis

- What do we care about?
- How to compare two algorithms
- Analyzing Code
- Asymptotic Analysis
- Big-Oh Definition

What do we care about?

- Correctness:
 - Does the algorithm do what is intended.
- Performance:
 - Speed time complexity
 - Memory space complexity
- Why analyze?
 - To make good design decisions
 - Enable you to look at an algorithm (or code) and identify the bottlenecks, etc.

Q: How should we compare two algorithms?

A: How should we compare two algorithms?

- Uh, why NOT just run the program and time it??
 - Too much *variability*, not reliable or *portable*:
 - Hardware: processor(s), memory, etc.
 - OS, Java version, libraries, drivers
 - Other programs running
 - Implementation dependent
 - Choice of input
 - Testing (inexhaustive) may *miss* worst-case input
 - Timing does not *explain* relative timing among inputs (what happens when *n* doubles in size)
- Often want to evaluate an *algorithm*, not an implementation
 - Even before creating the implementation ("coding it up")

9/28/2018

Comparing algorithms

When is one *algorithm* (not *implementation*) better than another?

- Various possible answers (clarity, security, ...)
- But a big one is *performance*: for sufficiently large inputs, runs in less time (our focus) or less space

Large inputs (n) because probably any algorithm is "plenty good" for small inputs (if *n* is 10, probably anything is fast enough)

Answer will be *independent* of CPU speed, programming language, coding tricks, etc.

Answer is general and rigorous, complementary to "coding it up and timing it on some test cases"

- Can do analysis before coding!

Today – Algorithm Analysis

- What do we care about?
- How to compare two algorithms
- Analyzing Code
 - How to count different code constructs
 - Best Case vs. Worst Case
 - Ignoring Constant Factors
- Asymptotic Analysis
- Big-Oh Definition

Analyzing code ("worst case")

Basic operations take "some amount of" constant time

- Arithmetic
- Assignment
- Access one Java field or array index
- Etc.

(This is an *approximation of reality*: a very useful "lie".)

Consecutive statements Loops Conditionals

Function Calls Recursion Sum of time of each statement Num iterations * time for loop body Time of condition plus time of slower branch Time of function's body Solve *recurrence equation*

```
Examples
b = b + 5
c = b / a
b = c + 100
for (i = 0; i < n; i++) {
    sum++;
}
if (i < 5) {
   sum++;
} else {
  for (i = 0; i < n; i++) {
    sum++;
  }
}
```

9/28/2018

Another Example

```
int coolFunction(int n, int sum) {
   int i, j;
  for (i = 0; i < n; i++) {
      for (j = 0; j < n; j++) {
       sum++;
      }
   }
  print "This program is great!"
  for (i = 0; i < n; i++) {
       sum++;
   }
   return sum
}
```

Using Summations for Loops

for (i = 0; i < n; i++) { sum++; }</pre>

Complexity cases

We'll start by focusing on two cases:

- Worst-case complexity: max # steps algorithm takes on "most challenging" input of size N
- Best-case complexity: min # steps algorithm takes on "easiest" input of size N

Find an integer in a *sorted* array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
    ???
}
```

Linear search – Best Case & Worst Case

Find an integer in a *sorted* array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) {
   for(int i=0; i < arr.length; ++i)
        if(arr[i] == k)
        return true;
   return false;
        Best case:
}
</pre>
```

Linear search – Running Times

Find an integer in a *sorted* array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) {
   for(int i=0; i < arr.length; ++i)
        if(arr[i] == k)
        return true;
   return false;
}
Best case: 6 "ish" steps = O(1)
Worst case: 5 "ish" * (arr.length)
        = O(arr.length)</pre>
```

Remember a faster search algorithm?

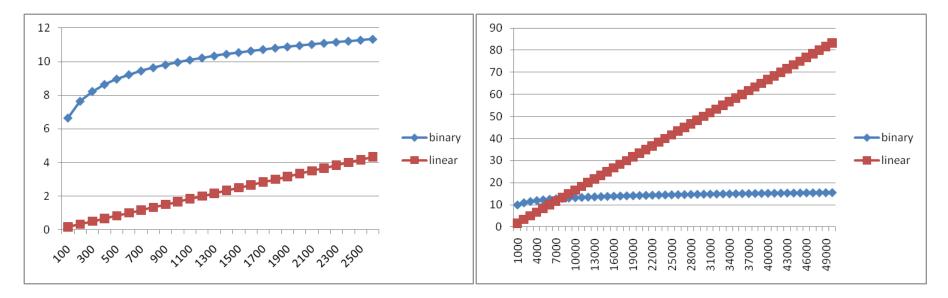
Ignoring constant factors

- So binary search is $O(\log n)$ and linear is O(n)
 - But which will actually be <u>faster</u>?
 - Depending on constant factors and size of n, in a particular situation, linear search could be faster....
- Could depend on constant factors
 - How many assignments, additions, etc. for each n
- And could depend on size of *n*
- **<u>But</u>** there exists some n_0 such that for all $n > n_0$ binary search "wins"
- Let's play with a couple plots to get some intuition...

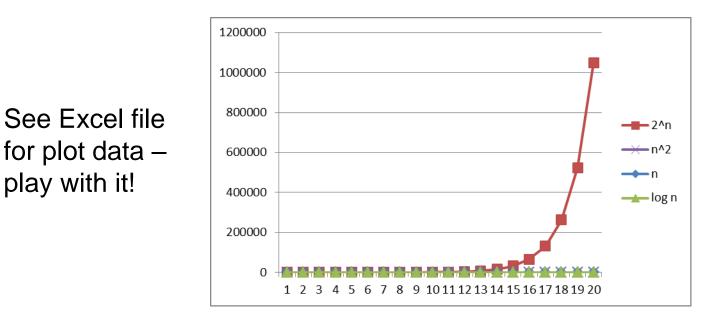
9/28/2018

Example

- Let's try to "help" linear search
 - Run it on a computer 100x as fast (say 2018 model vs. 1990)
 - Use a new compiler/language that is 3x as fast
 - Be a clever programmer to eliminate half the work
 - So doing each iteration is 600x as fast as in binary search
- Note: 600x still helpful for problems without logarithmic algorithms!



- Since so much is binary in CS, log almost always means log₂
- Definition: $\log_2 \mathbf{x} = \mathbf{y}$ if $\mathbf{x} = 2^{\mathbf{y}}$
- So, log₂ 1,000,000 = "a little under 20"
- Just as exponents grow *very* quickly, logarithms grow *very* slowly



Aside: Log base doesn't matter (much)

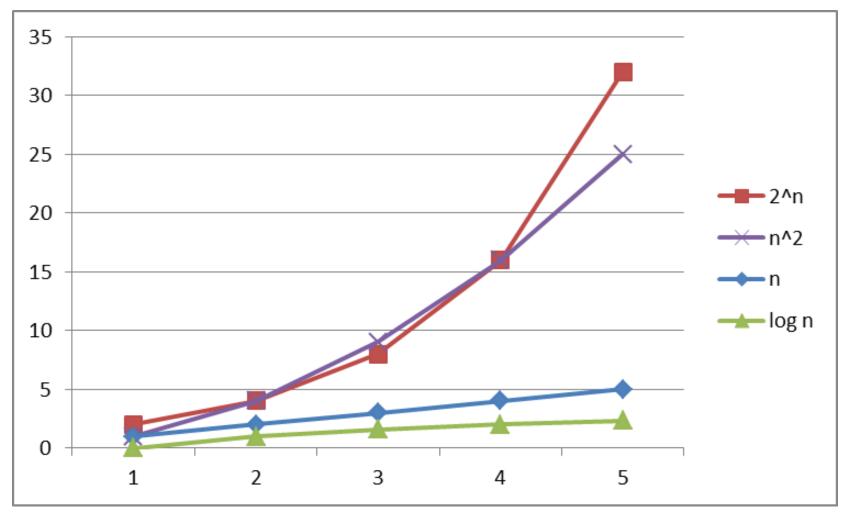
"Any base B log is equivalent to base 2 log within a constant factor"

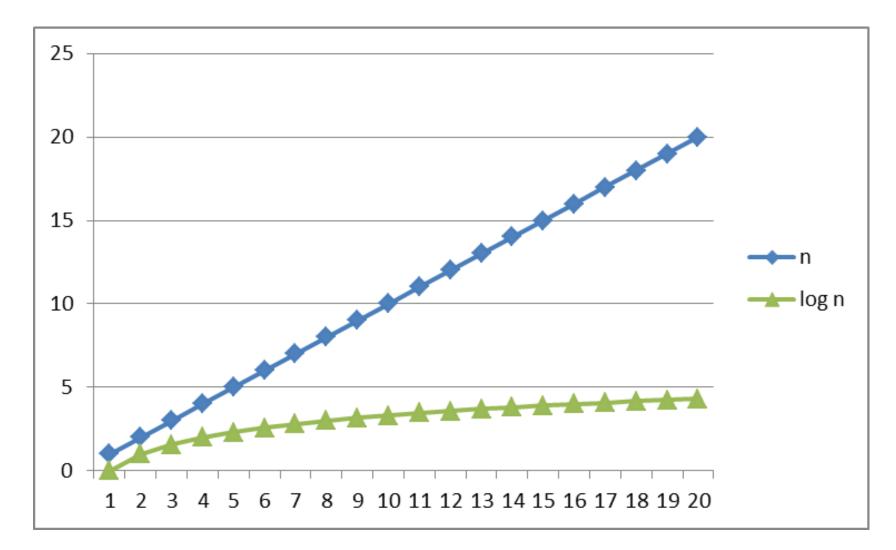
- And we are about to stop worrying about constant factors!
- In particular, $\log_2 \mathbf{x} = 3.22 \log_{10} \mathbf{x}$
- In general, we can convert log bases via a constant multiplier
- Say, to convert from base B to base A:

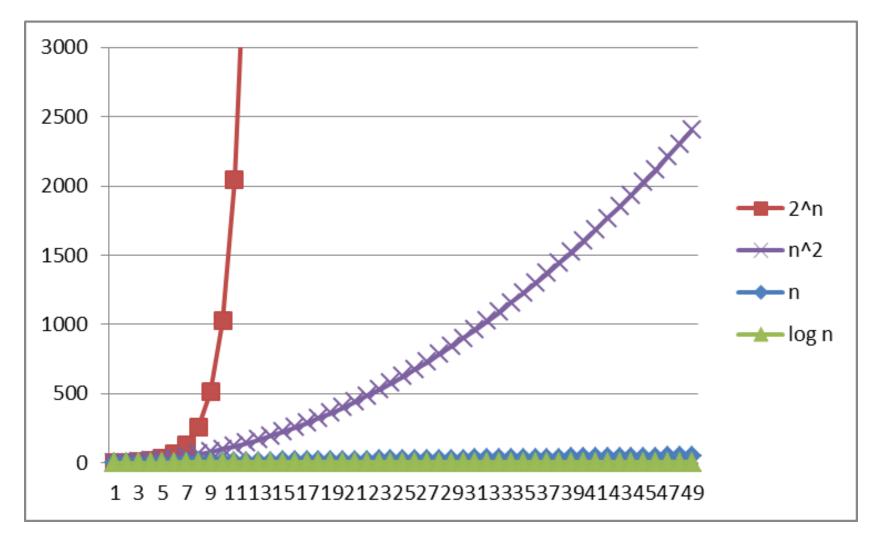
 $\log_{B} x = (\log_{A} x) / (\log_{A} B)$

Review: Properties of logarithms

- $\log(A*B) = \log A + \log B$ - So $\log(N^k) = k \log N$
- $\log(A/B) = \log A \log B$
- $\cdot \mathbf{x} = \log_2 2^x$
- log(log x) is written log log x
 - Grows as slowly as $2^{2^{y}}$ grows fast
 - Ex: $\log_2 \log_2 4billion \sim \log_2 \log_2 2^{32} = \log_2 32 = 5$
- (log x) (log x) is written log^2x
 - It is greater than $\log x$ for all x > 2







Today – Algorithm Analysis

- What do we care about?
- How to compare two algorithms
- Analyzing Code
- Asymptotic Analysis
- Big-Oh Definition

Asymptotic notation

About to show formal definition, which amounts to saying:

- 1. Eliminate low-order terms
- 2. Eliminate coefficients

Examples:

- 4*n* + 5
- $0.5n \log n + 2n + 7$
- $n^3 + 2^n + 3n$
- $n \log(10n^2)$

Big-Oh relates functions

We use O on a function f(n) (for example n²) to mean the set of functions with asymptotic behavior less than or equal to f(n)

So $(3n^2+17)$ is in $O(n^2)$

- $3n^2$ +17 and n^2 have the same **asymptotic behavior**

Confusingly, we also say/write:

- $(3n^2 + 17)$ is $O(n^2)$
- $(3n^2 + 17) = O(n^2)$

But we would never say $O(n^2) = (3n^2+17)$

9/28/2018

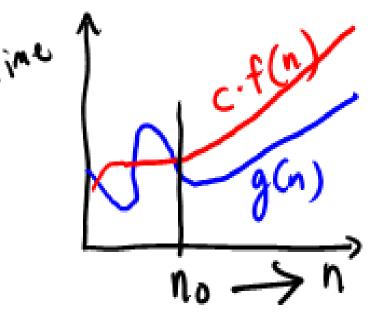
Formally Big-Oh

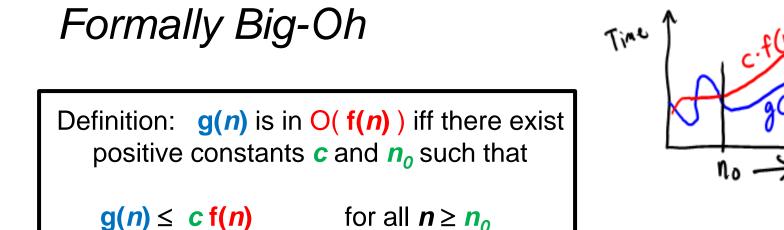
Definition: **g**(*n*) is in O(**f**(*n*)) iff there exist positive constants *c* and *n*₀ such that

 $g(n) \leq c f(n)$

for all $n \ge n_0$

Note: $n_0 \ge 1$ (and a natural number) and c > 0





Note: $n_0 \ge 1$ (and a natural number) and c > 0

To show **g**(*n*) is in O(**f**(*n*)), pick a *c* large enough to "cover the constant factors" and *n*₀ large enough to "cover the lower-order terms".

Example: Let g(n) = 3n + 4 and f(n) = n

c = 4 and $n_0 = 5$ is one possibility

This is "less than or equal to"

- So 3n + 4 is also $O(n^5)$ and $O(2^n)$ etc.

9/28/2018

What's with the **c**?

- To capture this notion of similar asymptotic behavior, we allow a constant multiplier (called c)
- Consider:

g(n) = 7n+5 **f(n)** = n

- These have the same asymptotic behavior (linear), so g(n) is in O(f(n)) even though g(n) is always larger
- There is <u>no</u> positive n_0 such that $g(n) \le f(n)$ for all $n \ge n_0$
- The 'c' in the definition allows for that:
 g(n) ≤ c f(n) for all n ≥ n₀
- To show g(n) is in O(f(n)), have c = 12, n₀ = 1

An Example

To show g(n) is in O(f(n)), pick a *c* large enough to "cover the constant factors" and n_0 large enough to "cover the lower-order terms"

• Example: Let $g(n) = 4n^2 + 3n + 4$ and $f(n) = n^3$

Examples

True or false?

- 1. 4+3n is O(n)
- 2. n+2logn is O(logn)
- 3. logn+2 is O(1)
- 4. n⁵⁰ is O(1.1ⁿ)

Notes:

- Do NOT ignore constants that are not multipliers:
 - n^3 is O(n²) : FALSE
 - 3^n is O(2ⁿ) : FALSE
- When in doubt, refer to the definition

What you can drop

- Eliminate coefficients because we don't have units anyway
 - $3n^2$ versus $5n^2$ doesn't mean anything when we cannot count operations very accurately
- Eliminate low-order terms because they have vanishingly small impact as *n* grows
- Do NOT ignore constants that are not multipliers
 - n^3 is not $O(n^2)$
 - 3^{n} is not $O(2^{n})$

(This all follows from the formal definition)

Big Oh: Common Categories

From fastest to slowest

<i>O</i> (1)	constant (same as <i>O</i> (<i>k</i>) for constant <i>k</i>)
O(log n)	logarithmic
O(<i>n</i>)	linear
O(n log <i>n</i>)	"n log <i>n</i> "
O(<i>n</i> ²)	quadratic
O(<i>n</i> ³)	cubic
<i>O</i> (<i>n</i> ^k)	polynomial (where is k is any constant > 1)
<i>O</i> (<i>k</i> ⁿ)	exponential (where <i>k</i> is any constant > 1)

Usage note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to k^n for some k>1"

More Asymptotic Notation

- Upper bound: O(f(n)) is the set of all functions asymptotically less than or equal to f(n)
 - g(n) is in O(f(n)) if there exist constants c and n_0 such that $g(n) \leq c f(n)$ for all $n \geq n_0$
- Lower bound: Ω(f(n)) is the set of all functions asymptotically greater than or equal to f(n)
 - g(n) is in $\Omega(f(n))$ if there exist constants *c* and n_0 such that $g(n) \ge c f(n)$ for all $n \ge n_0$
- Tight bound: θ(f(n)) is the set of all functions asymptotically equal to f(n)
 - Intersection of O(f(n)) and $\Omega(f(n))$ (can use *different* c values)

Regarding use of terms

A common error is to say O(f(n)) when you mean $\theta(f(n))$

- People often say O() to mean a tight bound
- Say we have f(n)=n; we could say f(n) is in O(n), which is true, but only conveys the upper-bound
- Since f(n)=n is also O(n⁵), it's tempting to say "this algorithm is exactly O(n)"
- Somewhat incomplete; instead say it is $\theta(n)$
- That means that it is not, for example $O(\log n)$

Less common notation:

- "little-oh": like "big-Oh" but strictly less than
 - Example: sum is $o(n^2)$ but not o(n)
- "little-omega": like "big-Omega" but strictly greater than
 - Example: sum is $\omega(\log n)$ but not $\omega(n)$

What we are analyzing

- The most common thing to do is give an O or θ bound to the worst-case running time of an algorithm
- Example: True statements about binary-search algorithm
 - Common: $\theta(\log n)$ running-time in the worst-case
 - Less common: $\theta(1)$ in the best-case (item is in the middle)
 - Less common: Algorithm is Ω(log log n) in the worst-case (it is not really, really, really fast asymptotically)
 - Less common (but very good to know): the find-in-sortedarray *problem* is Ω(log n) in the worst-case
 - No algorithm can do better (without parallelism)
 - A problem cannot be O(f(n)) since you can always find a slower algorithm, but can mean there exists an algorithm

Other things to analyze

- Space instead of time
 - Remember we can often use space to gain time
- Average case
 - Sometimes only if you assume something about the distribution of inputs
 - See CSE312 and STAT391
 - Sometimes uses randomization in the algorithm
 - Will see an example with sorting; also see CSE312
 - Sometimes an *amortized guarantee*
 - Will discuss in a later lecture

Summary

Analysis can be about:

- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
 - Or power or dollars or ...
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper or tight)

Big-Oh Caveats

- Asymptotic complexity (Big-Oh) focuses on behavior for <u>large n</u> and is independent of any computer / coding trick
 - But you can "abuse" it to be misled about trade-offs
 - Example: $n^{1/10}$ vs. log n
 - Asymptotically *n*^{1/10} grows more quickly
 - But the "cross-over" point is around 5 * 10¹⁷
 - So if you have input size less than 2^{58} , prefer $n^{1/10}$
- Comparing O() for <u>small n</u> values can be misleading
 - Quicksort: O(nlogn) (expected)
 - Insertion Sort: $O(n^2)$ (expected)
 - Yet in reality Insertion Sort is faster for small n's
 - We'll learn about these sorts later

Addendum: Timing vs. Big-Oh?

- At the core of CS is a backbone of theory & mathematics
 - Examine the algorithm itself, mathematically, not the implementation
 - Reason about performance as a function of n
 - Be able to mathematically prove things about performance
- Yet, timing has its place
 - In the real world, we do want to know whether implementation A runs faster than implementation B on data set C
 - Ex: Benchmarking graphics cards
- Evaluating an algorithm? Use asymptotic analysis
- Evaluating an implementation of hardware/software? Timing can be useful

Review: Properties of logarithms

- $\log(A*B) = \log A + \log B$ - So $\log(N^k) = k \log N$
- $\log(A/B) = \log A \log B$
- $\cdot \mathbf{x} = \log_2 2^x$
- log(log x) is written log log x
 - Grows as slowly as $2^{2^{y}}$ grows fast
 - Ex: $\log_2 \log_2 4billion \sim \log_2 \log_2 2^{32} = \log_2 32 = 5$
- (log x) (log x) is written log^2x
 - It is greater than $\log x$ for all x > 2