

# CSE332: Data Structures & Parallelism Lecture 2: Algorithm Analysis

Ruth Anderson Autumn 2018

## Today – Algorithm Analysis

- What do we care about?
- How to compare two algorithms
- Analyzing Code
- Asymptotic Analysis
- Big-Oh Definition

#### What do we care about?

- Correctness:
  - Does the algorithm do what is intended.
- Performance:
  - Speed time complexity
  - Memory space complexity
- Why analyze?
  - To make good design decisions
  - Enable you to look at an algorithm (or code) and identify the bottlenecks, etc.

#### Q: How should we compare two algorithms?

## A: How should we compare two algorithms?

- Uh, why NOT just run the program and time it??
  - Too much *variability*, not reliable or *portable*:
    - Hardware: processor(s), memory, etc.
    - OS, Java version, libraries, drivers
    - Other programs running
    - Implementation dependent
  - Choice of input
    - Testing (inexhaustive) may *miss* worst-case input
    - Timing does not *explain* relative timing among inputs (what happens when *n* doubles in size)
- Often want to evaluate an *algorithm*, not an implementation
  - Even before creating the implementation ("coding it up")

9/28/2018

## Comparing algorithms

When is one *algorithm* (not *implementation*) better than another?

- Various possible answers (clarity, security, ...)
- But a big one is *performance*: for sufficiently large inputs, runs in less time (our focus) or less space

Large inputs (n) because probably any algorithm is "plenty good" for small inputs (if *n* is 10, probably anything is fast enough)

Answer will be *independent* of CPU speed, programming language, coding tricks, etc.

Answer is general and rigorous, complementary to "coding it up and timing it on some test cases"

- Can do analysis before coding!

#### Today – Algorithm Analysis

- What do we care about?
- How to compare two algorithms
- Analyzing Code
  - How to count different code constructs
  - Best Case vs. Worst Case
  - Ignoring Constant Factors
- Asymptotic Analysis
- Big-Oh Definition

# Analyzing code ("worst case")

Basic operations take "some amount of" constant time

- Arithmetic
- Assignment
- Access one Java field or array index
- Etc.

(This is an *approximation of reality*: a very useful "lie".)

Consecutive statements Loops Conditionals

Function Calls Recursion Sum of time of each statement Num iterations \* time for loop body Time of condition plus time of slower branch Time of function's body Solve *recurrence equation* 

```
Examples
b = b + 5
c = b / a
b = c + 100
for (i = 0; i < n; i++) {
    sum++;
}
if (i < 5) {
   sum++;
} else {
  for (i = 0; i < n; i++) {
    sum++;
  }
}
```

9/28/2018

#### Another Example

```
int coolFunction(int n, int sum) {
   int i, j;
  for (i = 0; i < n; i++) {
      for (j = 0; j < n; j++) {
       sum++;
      }
   }
  print "This program is great!"
  for (i = 0; i < n; i++) {
       sum++;
   }
   return sum
}
```

Using Summations for Loops

# for (i = 0; i < n; i++) { sum++; }</pre>

#### Complexity cases

We'll start by focusing on two cases:

- Worst-case complexity: max # steps algorithm takes on "most challenging" input of size N
- Best-case complexity: min # steps algorithm takes on "easiest" input of size N

Find an integer in a *sorted* array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
    ???
}
```

#### Linear search – Best Case & Worst Case

Find an integer in a *sorted* array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) {
   for(int i=0; i < arr.length; ++i)
        if(arr[i] == k)
        return true;
   return false;
        Best case:
}
</pre>
```

#### Linear search – Running Times

Find an integer in a *sorted* array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) {
   for(int i=0; i < arr.length; ++i)
        if(arr[i] == k)
        return true;
   return false;
}
Best case: 6 "ish" steps = O(1)
Worst case: 5 "ish" * (arr.length)
        = O(arr.length)</pre>
```

#### Remember a faster search algorithm?

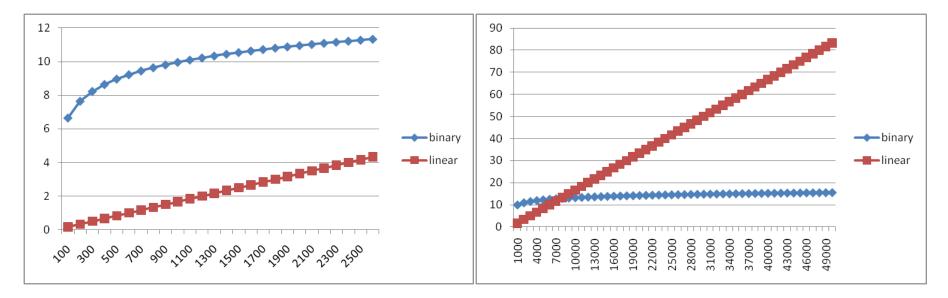
#### Ignoring constant factors

- So binary search is  $O(\log n)$  and linear is O(n)
  - But which will actually be <u>faster</u>?
  - Depending on constant factors and size of n, in a particular situation, linear search could be faster....
- Could depend on constant factors
  - How many assignments, additions, etc. for each n
- And could depend on size of *n*
- **<u>But</u>** there exists some  $n_0$  such that for all  $n > n_0$  binary search "wins"
- Let's play with a couple plots to get some intuition...

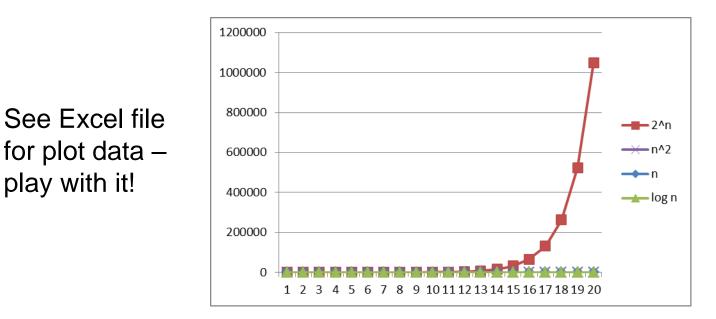
9/28/2018

#### Example

- Let's try to "help" linear search
  - Run it on a computer 100x as fast (say 2018 model vs. 1990)
  - Use a new compiler/language that is 3x as fast
  - Be a clever programmer to eliminate half the work
  - So doing each iteration is 600x as fast as in binary search
- Note: 600x still helpful for problems without logarithmic algorithms!



- Since so much is binary in CS, log almost always means log<sub>2</sub>
- Definition:  $\log_2 \mathbf{x} = \mathbf{y}$  if  $\mathbf{x} = 2^{\mathbf{y}}$
- So, log<sub>2</sub> 1,000,000 = "a little under 20"
- Just as exponents grow *very* quickly, logarithms grow *very* slowly



#### Aside: Log base doesn't matter (much)

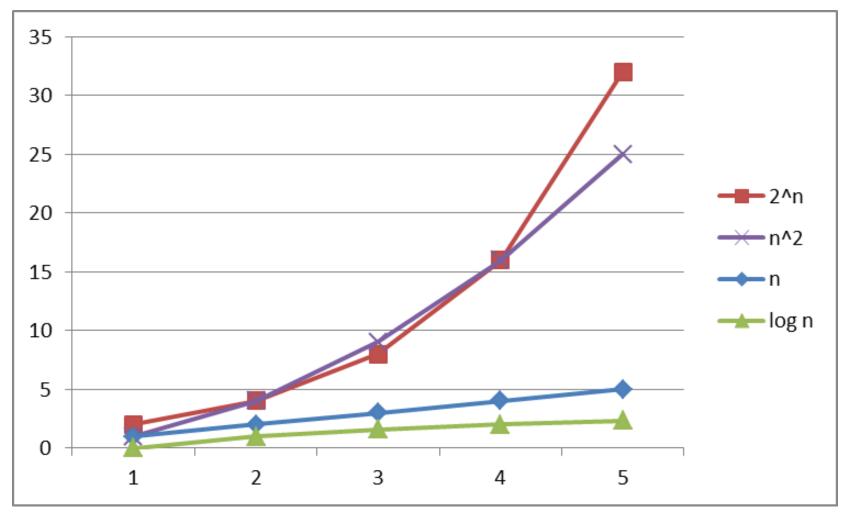
"Any base B log is equivalent to base 2 log within a constant factor"

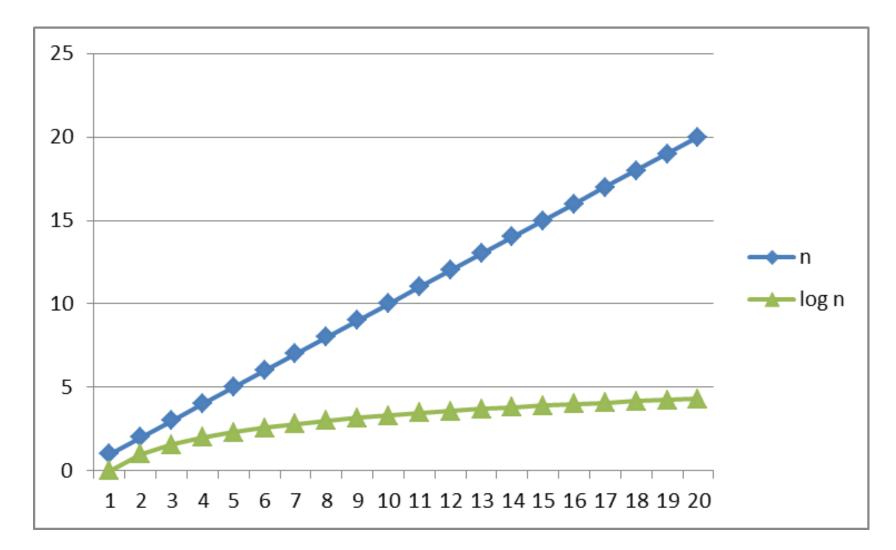
- And we are about to stop worrying about constant factors!
- In particular,  $\log_2 \mathbf{x} = 3.22 \log_{10} \mathbf{x}$
- In general, we can convert log bases via a constant multiplier
- Say, to convert from base B to base A:

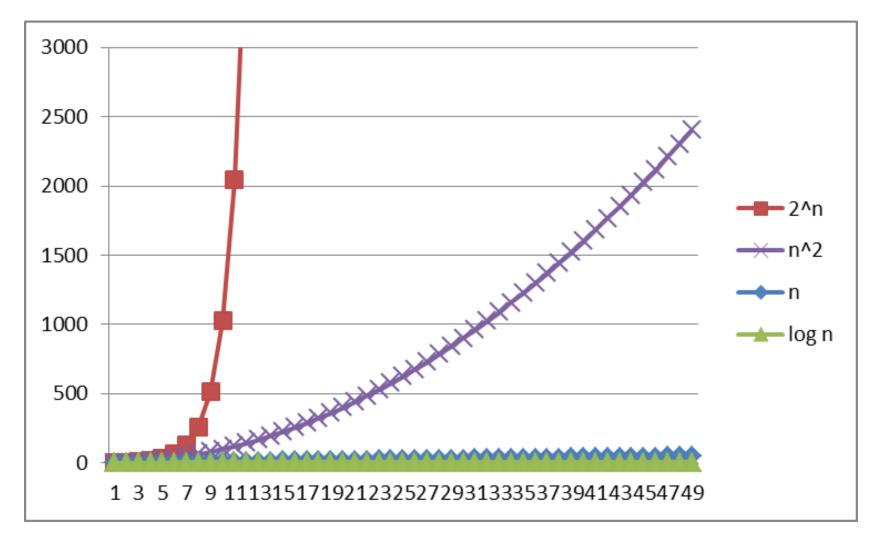
 $\log_{B} x = (\log_{A} x) / (\log_{A} B)$ 

#### Review: Properties of logarithms

- $\log(A*B) = \log A + \log B$ - So  $\log(N^k) = k \log N$
- $\log(A/B) = \log A \log B$
- $\cdot \mathbf{x} = \log_2 2^x$
- log(log x) is written log log x
  - Grows as slowly as  $2^{2^{y}}$  grows fast
  - Ex:  $\log_2 \log_2 4billion \sim \log_2 \log_2 2^{32} = \log_2 32 = 5$
- (log x) (log x) is written  $log^2x$ 
  - It is greater than  $\log x$  for all x > 2







## Today – Algorithm Analysis

- What do we care about?
- How to compare two algorithms
- Analyzing Code
- Asymptotic Analysis
- Big-Oh Definition

#### Asymptotic notation

About to show formal definition, which amounts to saying:

- 1. Eliminate low-order terms
- 2. Eliminate coefficients

Examples:

- 4*n* + 5
- $0.5n \log n + 2n + 7$
- $n^3 + 2^n + 3n$
- $n \log(10n^2)$

#### **Big-Oh relates functions**

We use O on a function f(n) (for example n<sup>2</sup>) to mean the set of functions with asymptotic behavior less than or equal to f(n)

So  $(3n^2+17)$  is in  $O(n^2)$ 

-  $3n^2$ +17 and  $n^2$  have the same **asymptotic behavior** 

Confusingly, we also say/write:

- $(3n^2 + 17)$  is  $O(n^2)$
- $(3n^2 + 17) = O(n^2)$

But we would never say  $O(n^2) = (3n^2+17)$ 

9/28/2018

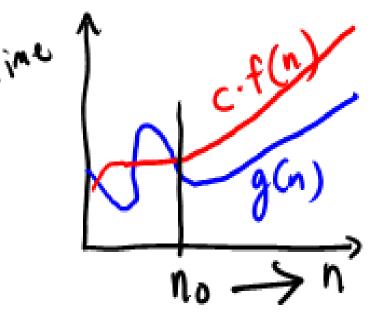
#### Formally Big-Oh

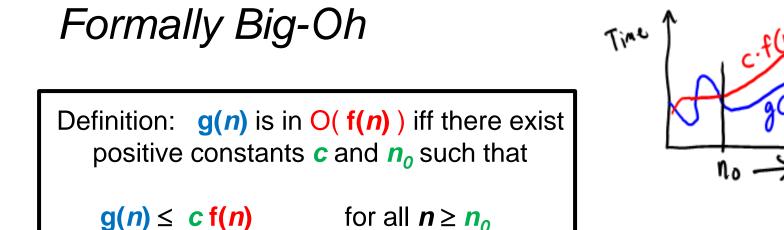
Definition: **g**(*n*) is in O(**f**(*n*)) iff there exist positive constants *c* and *n*<sub>0</sub> such that

 $g(n) \leq c f(n)$ 

for all  $n \ge n_0$ 

Note:  $n_0 \ge 1$  (and a natural number) and c > 0





Note:  $n_0 \ge 1$  (and a natural number) and c > 0

To show **g**(*n*) is in O( **f**(*n*) ), pick a *c* large enough to "cover the constant factors" and *n*<sub>0</sub> large enough to "cover the lower-order terms".

Example: Let g(n) = 3n + 4 and f(n) = n

c = 4 and  $n_0 = 5$  is one possibility

This is "less than or equal to"

- So 3n + 4 is also  $O(n^5)$  and  $O(2^n)$  etc.

9/28/2018

#### What's with the **c**?

- To capture this notion of similar asymptotic behavior, we allow a constant multiplier (called c)
- Consider:

**g(n)** = 7n+5 **f(n)** = n

- These have the same asymptotic behavior (linear), so g(n) is in O(f(n)) even though g(n) is always larger
- There is <u>no</u> positive  $n_0$  such that  $g(n) \le f(n)$  for all  $n \ge n_0$
- The 'c' in the definition allows for that:
   g(n) ≤ c f(n) for all n ≥ n₀
- To show g(n) is in O(f(n)), have c = 12, n<sub>0</sub> = 1

#### An Example

To show g(n) is in O(f(n)), pick a *c* large enough to "cover the constant factors" and  $n_0$  large enough to "cover the lower-order terms"

• Example: Let  $g(n) = 4n^2 + 3n + 4$  and  $f(n) = n^3$ 

#### Examples

True or false?

- 1. 4+3n is O(n)
- 2. n+2logn is O(logn)
- 3. logn+2 is O(1)
- 4. n<sup>50</sup> is O(1.1<sup>n</sup>)

Notes:

- Do NOT ignore constants that are not multipliers:
  - $n^3$  is O(n<sup>2</sup>) : FALSE
  - $3^n$  is O(2<sup>n</sup>) : FALSE
- When in doubt, refer to the definition

#### What you can drop

- Eliminate coefficients because we don't have units anyway
  - $3n^2$  versus  $5n^2$  doesn't mean anything when we cannot count operations very accurately
- Eliminate low-order terms because they have vanishingly small impact as *n* grows
- Do NOT ignore constants that are not multipliers
  - $n^3$  is not  $O(n^2)$
  - $3^{n}$  is not  $O(2^{n})$

(This all follows from the formal definition)

# Big Oh: Common Categories

From fastest to slowest

| <i>O</i> (1)                       | constant (same as <i>O</i> ( <i>k</i> ) for constant <i>k</i> ) |
|------------------------------------|-----------------------------------------------------------------|
| O(log n)                           | logarithmic                                                     |
| O( <i>n</i> )                      | linear                                                          |
| O(n <b>log</b> <i>n</i> )          | "n log <i>n</i> "                                               |
| O( <i>n</i> <sup>2</sup> )         | quadratic                                                       |
| O( <i>n</i> <sup>3</sup> )         | cubic                                                           |
| <i>O</i> ( <i>n</i> <sup>k</sup> ) | polynomial (where is $k$ is any constant > 1)                   |
| <i>O</i> ( <i>k</i> <sup>n</sup> ) | exponential (where <i>k</i> is any constant > 1)                |

Usage note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to  $k^n$  for some k>1"

#### More Asymptotic Notation

- Upper bound: O( f(n) ) is the set of all functions asymptotically less than or equal to f(n)
  - g(n) is in O(f(n)) if there exist constants c and  $n_0$  such that  $g(n) \leq c f(n)$  for all  $n \geq n_0$
- Lower bound: Ω( f(n) ) is the set of all functions asymptotically greater than or equal to f(n)
  - g(n) is in  $\Omega(f(n))$  if there exist constants *c* and  $n_0$  such that  $g(n) \ge c f(n)$  for all  $n \ge n_0$
- Tight bound: θ( f(n) ) is the set of all functions asymptotically equal to f(n)
  - Intersection of O(f(n)) and  $\Omega(f(n))$  (can use *different* c values)

# Regarding use of terms

A common error is to say O(f(n)) when you mean  $\theta(f(n))$ 

- People often say O() to mean a tight bound
- Say we have f(n)=n; we could say f(n) is in O(n), which is true, but only conveys the upper-bound
- Since f(n)=n is also O(n<sup>5</sup>), it's tempting to say "this algorithm is exactly O(n)"
- Somewhat incomplete; instead say it is  $\theta(n)$
- That means that it is not, for example  $O(\log n)$

Less common notation:

- "little-oh": like "big-Oh" but strictly less than
  - Example: sum is  $o(n^2)$  but not o(n)
- "little-omega": like "big-Omega" but strictly greater than
  - Example: sum is  $\omega(\log n)$  but not  $\omega(n)$

## What we are analyzing

- The most common thing to do is give an O or  $\theta$  bound to the worst-case running time of an algorithm
- Example: True statements about binary-search algorithm
  - Common:  $\theta(\log n)$  running-time in the worst-case
  - Less common:  $\theta(1)$  in the best-case (item is in the middle)
  - Less common: Algorithm is Ω(log log n) in the worst-case (it is not really, really, really fast asymptotically)
  - Less common (but very good to know): the find-in-sortedarray *problem* is Ω(log n) in the worst-case
    - No algorithm can do better (without parallelism)
    - A problem cannot be O(f(n)) since you can always find a slower algorithm, but can mean there exists an algorithm

#### Other things to analyze

- Space instead of time
  - Remember we can often use space to gain time
- Average case
  - Sometimes only if you assume something about the distribution of inputs
    - See CSE312 and STAT391
  - Sometimes uses randomization in the algorithm
    - Will see an example with sorting; also see CSE312
  - Sometimes an *amortized guarantee* 
    - Will discuss in a later lecture

#### Summary

Analysis can be about:

- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
  - Or power or dollars or ...
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper or tight)

## **Big-Oh Caveats**

- Asymptotic complexity (Big-Oh) focuses on behavior for <u>large n</u> and is independent of any computer / coding trick
  - But you can "abuse" it to be misled about trade-offs
  - Example:  $n^{1/10}$  vs. log n
    - Asymptotically *n*<sup>1/10</sup> grows more quickly
    - But the "cross-over" point is around 5 \* 10<sup>17</sup>
    - So if you have input size less than  $2^{58}$ , prefer  $n^{1/10}$
- Comparing O() for <u>small n</u> values can be misleading
  - Quicksort: O(nlogn) (expected)
  - Insertion Sort:  $O(n^2)$  (expected)
  - Yet in reality Insertion Sort is faster for small n's
  - We'll learn about these sorts later

# Addendum: Timing vs. Big-Oh?

- At the core of CS is a backbone of theory & mathematics
  - Examine the algorithm itself, mathematically, not the implementation
  - Reason about performance as a function of n
  - Be able to mathematically prove things about performance
- Yet, timing has its place
  - In the real world, we do want to know whether implementation A runs faster than implementation B on data set C
  - Ex: Benchmarking graphics cards
- Evaluating an algorithm? Use asymptotic analysis
- Evaluating an implementation of hardware/software? Timing can be useful

#### Review: Properties of logarithms

- $\log(A*B) = \log A + \log B$ - So  $\log(N^k) = k \log N$
- $\log(A/B) = \log A \log B$
- $\cdot \mathbf{x} = \log_2 2^x$
- log(log x) is written log log x
  - Grows as slowly as  $2^{2^{y}}$  grows fast
  - Ex:  $\log_2 \log_2 4billion \sim \log_2 \log_2 2^{32} = \log_2 32 = 5$
- (log x) (log x) is written  $log^2x$ 
  - It is greater than  $\log x$  for all x > 2