
Name: ____Sample Solution___________________

Email address (UWNetID): _____________________________________

CSE 332 Winter 2018 Final Exam
(closed book, closed notes, no calculators)

Instructions: Read the directions for each question carefully before answering. We may give

partial credit based on the work you write down, so show your work! Use only the data

structures and algorithms we have discussed in class so far. Writing after time has been called

will result in a loss of points on your exam.

Note: For questions where you are drawing pictures, please circle your final answer.

You have 1 hour and 50 minutes, work quickly and good luck!

Total: Time: 1 hr and 50 minutes.

Question Max Points Score

1 12

2 9

3 11

4 10

5 14

6 13

7 16

8 9

9 6

Total 100

2 of 12

1) [12 points total] Hash Tables

For a) and b) below, insert the following elements in this order: 14, 22, 33, 44, 13, 73, 28. For

each table, TableSize = 10, and you should use the primary hash function h(k) = k%10. If an

item cannot be inserted into the table, please indicate this and continue inserting the remaining

values.

a) Separate chaining hash table – use a

sorted linked list for each bucket

where the values are ordered by

increasing value

0

1

2

3

4

5

6

7

8

9

b) Quadratic probing hash table

0

1

2

3

4

5

6

7

8

9

c) What is the load factor in Table b)? 0.7

d) In a sentence or two, describe double hashing.

The first hash function determines the original location where we should try to place the

item. If there is a collision, then the second hash function is used to determine the probing

step distance as 1*h2(key), 2*h2(key), 3*h2(key) etc. away from the original location.

e) What is re-hashing? Would it be beneficial to implement re-hashing on a separate chaining

hash table like the one shown above in part a)? Why or Why not?

Re-hashing is creating a new table (usually ~twice as large and a prime number) and then

rehashing the values from the original table and moding by the new tablesize and inserting

into the new table. While a separate chaining hash table that uses linked lists as buckets

will not ever fill up, the higher the load factor the longer the chains will get and

performance will suffer. So yes, re-hashing would be beneficial.

f) What is one disadvantage quadratic probing has compared to linear probing?

In quadratic probing, if the table is more than half full (load factor = 0.5) then you are not

guaranteed to be able to find a location to place the value in. In a linear probling hash

table you can always find a location as long as the table is not completely full.

 3 of 12

2) [9 points total] Graphs!

a) [6 points] Find a minimum spanning tree with Prim’s algorithm using vertex G as the

starting node (mark, circle, or highlight edges below to indicate they are in your minimum

spanning tree). You must show your steps in the table below for full credit. Show your steps

by crossing through values that are replaced by a new value. Break ties by choosing the lowest

letter first; ex. if B and C were tied, you would explore B first. Note that the next question asks

you to recall what order vertices were declared known.

 Cost Prev Known?

A

B

C

D

E

F

G

b) [1 point] List the order the vertices are added to the known set:

c) [1 point] Pick a node you could start at to get a different minimum spanning tree than the one

you found in part a). Which edge would be in this new tree that is not in your tree above? DO

NOT DRAW THE WHOLE TREE.

Starting node (for example, “Z”): _________ Edge (for example, “(X, Y)”): ______________

d) [1 point] Will Prim’s starting at vertex G find a correct minimum spanning tree if the weight

of edge (A,F) is set to be -6? (circle one)

YES NO

4 of 12

3) [11 points total] More Graphs!

a) [2 points] If you needed to calculate the out-degree of all vertices in a graph, which

representation would you prefer (circle one):

adjacency matrix or adjacency list

In a couple of sentences describe WHY?

In an adjacency matrix you would need to visit all V locations in the row for that

vertex to calculate its out degree (so a total time of O(|V|2)). In an adjacency list you

would only need to visit the d (where d is the out-degree of a single node) nodes in

the linked list linked for that vertex (so a total time of O(|V| + |E|)).

b) [2 points] Give an example of a directed graph with exactly two topological orderings and

one node of in-degree zero.

 c) [1 point] Let G be a connected, undirected, weighted graph. Convert G to a directed graph as

follows: replace every undirected edge (u, v) with directed edges (u -> v) and (v -> u). The

resulting graph is strongly connected.

TRUE FALSE

d) [4 points] What is the worst case running time of Dijkstra’s algorithm described in lecture

that:

 i. Does NOT use a priority queue:

 ii. Uses a priority queue:

e) [2 points] Give an EXACT number (in terms of V) for:

i. Maximum number of edges in an undirected graph without self-loops:

ii. Minimum number of edges in a weakly connected directed graph

 5 of 12

4) [10 points] Parallel “Suffix Max” (Like Prefix, but from the Right instead):

a) Given the following array as input, calculate the “suffix max” using an algorithm similar to

the parallel prefix algorithm discussed in lecture. Fill the output array with the max of the

values contained in all of the cells to the right (including the value contained in that cell) in

the input array. The first pass of the algorithm is similar to the first pass of the parallel prefix

code you have seen before. Fill in the values for max and var in the tree below. The output

array has been filled in for you. Do not use a sequential cutoff. You can assume that the

array contains only positive integers.

Index 0 1 2 3 4 5 6 7
Input 14 50 38 29 6 12 3 5
Output 50 50 38 29 12 12 5 5

b) How is the var value computed for the left and right children of a node in the tree. Give

exact code (not just an English description) where p is a reference to the current tree node.

p.left.var = Math.max(p.var, p.right.max)

p.right.var = p.var

c) How is output[i] computed? Give exact code assuming leaves[i] refers to the leaf

node in the tree visible just above the corresponding location in the input and output

arrays in the picture above.

output[i] = Math.max(leaves[i].max, leaves[i].var)

lo:0

hi:8

max:50

var:0

lo:0

hi:4

max:50

var:12

lo:4

hi:8

max:12

var:0

lo:6

hi:8

max:5

var:0

lo:4

hi:6

max:12

var:5

lo:2

hi:4

max:38

var:12

lo:0

hi:2

max:50

var:38

l:0

h:1

max:14

var:50

l:1

h:2

max:50

var:38

l:2

h:3

max:38

var:29

l:3

h:4

max:29

var:12

l:4

h:5

max:6

var:12

l:5

h:6

max:12

var:5

l:6

h:7

max:3

var:5

l:7

h:8

max:5

var:0

6 of 12

5) [14 points] In Java using the ForkJoin Framework, write code to solve the following problem:

• Input: An array of positive ints

 • Output: an array of 10 ints containing a count of the ones place digits of the values

in the Input array. The count of digit i will be in Output[i].

For example, if the input array is {2007, 13, 17, 24, 5, 17, 38, 407, 0, 7, 4, 17}, the output array

(always containing exactly 10 ints) would be {1, 0, 0, 1, 2, 1, 0, 6, 1, 0}.

 Do not employ a sequential cut-off: the base case should process one element.

(You can assume the input array will contain at least one element.)

 Give a class definition, CountOnesPlaceTask, along with any other code or classes

needed.

 Fill in the function findOnesPlaces below.

You may not use any global data structures or synchronization primitives (locks).

import java.util.concurrent.ForkJoinPool;

import java.util.concurrent.RecursiveTask;

import java.util.concurrent.RecursiveAction;

class Main{

public static final ForkJoinPool fjPool = new ForkJoinPool();

// Returns an array of 10 ints. Where the ith element

// contains a count of the number of times i appears in

// the ones place in the values in input.

public static int[] findOnesPlaces (int[] input) {

return fjPool.invoke(new CountOnesPlaceTask(input, 0,

input.length));

}

}

Please fill in the function above and write your class on the next page.

a) Write the code.

b) Answer this: Is this a map or a reduction (circle one)? Why?

We are reducing the problem from an array of size n down to an array of size 10.

 7 of 12

5) (Continued) Write your class on this page.

public static class CountOnesPlaceTask extends RecursiveTask<int[]>{

 int[] input;

 int lo;

 int hi;

 public CountOnesPlaceTask(int[] input, int lo, int hi) {

 this.input = input;

 this.lo = lo;

 this.hi = hi;

 }

 public int[] compute() {

 if (hi − lo <= 1) {

 int[] counts = new int[10];

 counts[input[lo] % 10] = 1;

 return counts;

 } else {

 int mid = lo + (hi − lo)/2;

 CountOnesPlaceTask left = new CountOnesPlaceTask(input, lo, mid);
 CountOnesPlaceTask right = new CountOnesPlaceTask(input, mid, hi);

 right.fork();

 int[] leftResult = left.compute();

 int[] rightResult = right.join();

 for (int i = 0; i < 10; i++) {

 leftResult[i] += rightResult[i];

 }

 return leftResult;

 }

 }

}

Don’t forget to answer

b) on the previous page!

8 of 12

6) [13 points] Concurrency: The following class implements a Bank account class that keeps

track of multiple Bank Accounts a user might have. Multiple threads could be accessing the same

BankAccounts object.

public class BankAccounts {

 private Map<String, Double> acctsMap = new HashMap<>();

 ReentrantLock lock = new ReentrantLock();

 // Returns null if account does not exist

 public Double getBalance(String acctName) {

 lock.acquire();

 return acctsMap.get(acctName);

 Double balance = acctsMap.get(acctName);

 lock.release();

return balance;

 }

 public Double withdraw(String acctName, Double amount) {

 lock.acquire();

 Double acctBalance = getBalance(acctName);

 if (acctBalance == null || acctBalance < amount) {

 lock.release();

 throw new InvalidTransactionException();

 }

 acctsMap.put(acctName, acctBalance – amount);

 lock.release();

 return amount;

 }

 // Deposit amount in acctName

 // Creates acctName if it does not already exist

 public void deposit(String acctName, Double amount) {

 lock.acquire();

 Double acctBalance = getBalance(acctName);

 if (acctBalance == null) {

 acctBalance = 0.0;

 }

 acctsMap.put(acctName, acctBalance + amount);

 lock.release();

 }

}

 9 of 12

6) (Continued)

a) Does the BankAccounts class above have (circle all that apply):

a race condition, potential for deadlock, a data race, none of these

If there are any problems, describe them in 1-2 sentences.

There is a data race on the acctsMap, e.g. one thread could be reading it in getBalance

while another thread could be writing it in withdraw or deposit. Similarly multiple

threads could be writing it at the same time by calling withdraw or deposit

simultaneously. A data race is a race condition.

b) Suppose we made the withdraw method synchronized, and changed nothing else in the

code. Does this modified BankAccounts class above have (circle all that apply):

a race condition, potential for deadlock, a data race, none of these

If there are any FIXED problems, describe why they are FIXED in 1-2 sentences. If there are any

NEW problems, describe them in 1-2 sentences.

You can no longer have a race condition between two simultaneous calls to withdraw.

c) Modify the code on the previous page to use locks to avoid any of the potential problems

listed above. Create locks as needed. Use any reasonable names for the locking methods you

use. DO NOT use synchronized. You should create re-entrant lock objects as needed as

follows (place this in your code as needed):

ReentrantLock lock = new ReentrantLock();

d) Clearly circle all of the critical sections in your code on the previous page.

10 of 12

7) [16 points] Sorting

a) [2 points] Give the recurrence for SEQUENTIAL Mergesort – worst case: (Note: We

are NOT asking for the closed form.)

b) [3 points] Give the recurrence for Quicksort (parallel sort & parallel partition) – worst

case span: (Note: We are NOT asking for the closed form.)

c) [5 points] Give the big-O runtimes requested below.

__________ A) Quicksort (parallel sort & parallel partition) – best case span

__________ B) Heapsort – worst case

__________ C) Insertion Sort – worst case

__________ D) Bucket Sort – best case

__________ E) Mergesort (sequential) – worst case

d) [1 point] Is the version of Quicksort described in lecture a stable sort?

 YES NO

e) [2 points] In 1-2 sentences, describe what it means for a sort to be stable?

In case of ties during the sort, the original ordering of values is preserved.

f) [3 points] Radix Sort: Give a formula for the worst case big-O running time of radix

sort. For full credit, your formula should include all of these variables:

n – the number of values to be sorted

max_value – the values to be sorted range from 0 to max_value

radix – the radix or base to be used in the sort

Answer:

 11 of 12

8) [9 points] P, NP, NP-Complete

a) [2 points] “NP” stands for ____ Nondeterministic Polynomial ______________________

b) [2 points] What does it mean for a problem to be in NP?

Given a candidate solution, we can verify whether the solution is correct in polynomial

time.

c) [5 points] For the following problems, circle ALL the sets they (most likely) belong to:

Finding the shortest path from one

vertex to another vertex in a

weighted directed graph NP P NP-complete None of these

Finding a cycle that visits

each edge in a graph

exactly once NP P NP-complete None of these

Determining if a program

will run forever NP P NP-complete None of these

Finding the prefix sum of an

array in parallel using

10 processors NP P NP-complete None of these

Finding a path that starts and

ends at the same vertex that

visits every vertex exactly

once NP P NP-complete None of these

12 of 12

9) [6 points] Speedup

Your boss wants 111x speedup on a program of which 9/10 is parallelizable. What do you

tell them? At least how many processors would you need?

Justify your answer with a computation. No credit given without an explanation.

