
Name: _____________________________________

Email address (UWNetID): _____________________________________

CSE 332 Winter 2015: Final Exam
(closed book, closed notes, no calculators)

Instructions: Read the directions for each question carefully before answering. We may give

partial credit based on the work you write down, so show your work! Use only the data

structures and algorithms we have discussed in class so far.

Note: For questions where you are drawing pictures, please circle your final answer.

You have 1 hour and 50 minutes, work quickly and good luck!

Total: Time: 1 hr and 50 minutes.

Question Max Points Score

1 10

2 6

3 14

4 10

5 6

6 10

7 19

8 12

9 5

10 8

Total 100

Name: ______________________________

2 of 13

1) [10 points total] Sorting: (Assume that array sun[] has indices: 0 to size-1)

SunnySort(int[] sun) {

 for (int i = 1; i < size; i++) {

 int j;

 int temp = sun[i];

 for (j = i; j > 0 && temp < sun[j-1]; j--) {

 sun[j] = sun[j-1];

 }

 sun[j] = temp;

 }

}

a) [2 points] This is actually a sort mentioned in class. What sort is this?

b) [4 points] Describe the best and worst case data set for this sort. (If all cases behave

similarly, please state that.) What is the big-O running time of those two data sets?

Best Case data set?

Best Case running time?

Worst Case data set?

Worst Case running time?

c) [2 points] Is it an in-place sort? Why or why not?

(no credit without a reason or a definition of in-place, for partial credit define in-place

sorting)

d) [2 points] Is it a stable sort? Why or why not?

(no credit without a reason or definition of stable, for partial credit define stable sorting)

 Name: ______________________________

 3 of 13

2) [6 points total] Multiple Choice & Short Answer

a) [2 points] What is the running time of Dijkstra’s algorithm (assuming an adjacency list

representation, and priority queues are used)?

b) [2 points] Given a graph with |V| vertices and |E| edges, what is the space requirement (in

big-O) for representing the graph. Pick your answers from the following:

O(|E|), O(|V|), O(|V|
2
), O(|E|

2
), O(|E| + |V|), O(|E| * |V|), O(|E|

2
 + |V|),

O(|V|
2
 + |E|), O(|V|

2
 + |E|

2
), O(|V|

2
 * |E|

2
).

As an adjacency list?

As an adjacency matrix?

c) [2 points] Which of the two graph representations is preferable for a sparse graph (in

terms of using the smallest amount of space) (choose the best answer)?

Circle ONE (and only ONE answer):

i. An adjacency list, but only if there is only one edge for each vertex

ii. An adjacency list, but only if the number of edges is less than |V|

iii. An adjacency list

iv. An adjacency matrix, but only if |V| is large

v. An adjacency matrix, but only if |E| is large

vi. An adjacency matrix.

Name: ______________________________

4 of 13

3) [14 points total] Graphs and Dijkstra’s Algorithm

Use the following graph for this problem:

a) [2 points] List a valid topological ordering of the nodes in the graph above (if there are

no valid orderings, state why not).

b) [5 points] Step through Dijkstra’s Algorithm to calculate the single source shortest path

from A to every other vertex. You must show your steps in the table below for full

credit. Show your steps by crossing through values that are replaced by a new value.

Break ties by choosing the lowest letter first; ex. if B and C were tied, you would explore

B first. Note that the next question asks you to recall what order vertices were declared

known.

Vertex Known Distance Path

A

B

C

D

E

F

G

A B

C

D

F

E

G

2

4
1 3

2

2

1

4
1

5 2

3

 Name: ______________________________

 5 of 13

c) [1 point] In what order would Dijkstra’s algorithm mark each node as known?

d) [1 point] List the shortest path from A to G?

e) [2 points] For each modification to the graph on the previous page described below,

indicate whether the modification would cause Dijkstra’s algorithm to fail to find a

shortest path when starting at A. That is, running Dijkstra’s would find a shortest path

from A to some vertex which was not the actual shortest path to that vertex. Assume each

modification is applied independently to the original graph (they are not all combined).

Circle one for each of i. thru ii.

i. Add an edge DC with weight of -4 o.k. Dijkstra’s would fail

ii. Change weight on edge AC to -2 o.k. Dijkstra’s would fail

f) [2 points] Give a Minimum Spanning Tree (MST) of the graph below by highlighting the

edges that would be part of the MST.

g) [1 point] Kruskal’s algorithm to find the minimum spanning tree made use of a data structure

we only used for Kruskal’s called ____________________________________.

A B

C

D

F

E

G

2

4
1 3

2

2

1

4
1

5 2

3

Name: ______________________________

6 of 13

4) [10 points] In Java using the ForkJoin Framework, write code to solve the following problem:

 • Input: An array of ints (does not contain duplicates)

 • Output: the maximum value and its location (index) in the Input array.

 Do not employ a sequential cut-off: the base case should process one element.

(You can assume the input array will contain at least one element.)

 Give a class definition, FindMax, along with any other code or classes needed.

 We have provided some of the code for you, you should also fill in the _______ part.

import java.util.concurrent.ForkJoinPool;

import java.util.concurrent.RecursiveTask;

class Pair { // You are not required to use this class

 int a;

 int b;

 public Pair (int a, int b) {

 this.a = a;

 this.b = b;

 }

}

class Main{

static final ForkJoinPool fjPool = new ForkJoinPool();

_________ findMax (int[] array) {

 return fjPool.invoke(new FindMax(_____________________));

}

}

Please fill in the two “_______” above and write your code on the next page.

 Name: ______________________________

 7 of 13

4) Continued. Write your code on this page.

Name: ______________________________

8 of 13

5) [6 points] Speedup

Given a program where 75% of it is parallelizable (and 25% of it must be run sequentially)

what is the maximum speedup you would expect to get with 5 processors. Note: You must

show your work for any credit. For full credit give your answer as a number or a

simplified fraction (not a formula).

 Name: ______________________________

 9 of 13

6) [10 points] Parallel Prefix FindMax:

a) Given the following array as input, perform the parallel prefix algorithm to fill the output

array with the maximum value contained in all of the cells to the left (including the

value contained in that cell) in the input array. Fill in the values for: lo, hi, max, and

fromLeft in the tree below. Do not use a sequential cutoff. You can assume that the

array contains only positive integers. Note: This is findMax, NOT sum!

Index 0 1 2 3 4 5 6 7
Input 3 5 4 7 2 8 9 40
Output

b) How is the fromLeft value computed for a node in the tree? Specifically, if you have a

node with max & fromLeft computed, how do you compute fromLeft for its left & right

children (both of which have max already computed).

Left child’s fromLeft:

Right child’s fromLeft:

lo:

hi:

max:

fromleft:

lo:

hi:

max:

fromleft:

lo:

hi:

max:

fromleft:

lo:

hi:

max:

fromleft:

lo:

hi:

max:

fromleft:

lo:

hi:

max:

fromleft:

lo:

hi:

max:

fromleft:

l:

h:

mx:

fl:

l:

h:

mx:

fl:

l:

h:

mx:

fl:

l:

h:

mx:

fl:

l:

h:

mx:

fl:

l:

h:

mx:

fl:

l:

h:

mx:

fl:

l:

h:

mx:

fl:

Name: ______________________________

10 of 13

7) [19 points] The following class implements a dictionary storing (int key, E data) pairs as a

“move to front” unsorted linked list. It assumes no duplicate keys will be inserted.

public class MoveToFrontList<E> {

 private Node front = null;

 // Remove Node containing key from the list & return data

 // associated with key or null if key not found.

 synchronized E delete(int key){…}

 // Insert (key, data) at the front of the list.

 synchronized void insert(int key, E data){

 front = new Node(key, data, front);

}

 // Find (key, data) and move to the front of the list.

 // Return data associated with key or null if key not found.

 E findAndMove(int key){

 E tempData = delete(key);

 if (tempData != null) insert(key, tempData);

 return tempData;

 }

a) Does the code above have (circle all that apply):

potential for deadlock, a data race, a race condition, none of these

b) If possible, show (using code as done in class) an interleaving of two or more threads

where a value that is in the list would not be found. If not possible, explain why not.

c) If we change the findAndMove method to be synchronized, now, does the code above

have (circle all that apply) (Note: synchronized uses re-entrant locks):

potential for deadlock, a data race, a race condition, none of these

d) Say we added another find method to this class that only finds values, but does not

move them (does not modify the list). (See the code for find on the next page.) If all

other methods are synchronized, but our new find method is not synchronized,

does the code above plus this new find method have (circle all that apply):

potential for deadlock, a data race, a race condition, none of these

 Name: ______________________________

 11 of 13

e) Say that instead of using synchronized at all, we used a readers/writer lock on the

list. Modify the code below to use a RWLock. Draw arrows and label them to show

where you are locking and unlocking (be very exact with your arrows). Use any

reasonable names for the RWLock methods you use. You can assume that RWLock is re-

entrant. (You can ignore the delete method itself – assume it “does the right thing”.)

public class MoveToFrontList<E> {

 private RWLock lk = new RWLock();

 private Node front = null;

 // Remove Node containing key from the list & return data

 // associated with key or null if key not found.

 E delete(int key){…}

 // Insert (key, data) at the front of the list.

 void insert(int key, E data){

 front = new Node(key, data, front);

}

 // Find (key, data) and move to the front of the list.

 // Return data associated with key or null if key not found.

 E findAndMove(int key){

 E tempData = delete(key);

 if (tempData != null) insert(key, tempData);

 return tempData;

 }

 // Find (key, data) but does NOT move it.

 // Return data associated with key or null if key not found.

 E find(int key, E data){

 Node temp = front;

 while (temp != null) {

 if (temp.key == key) return temp.data;

 temp = temp.next;

 }

 return temp;

 }

}

f) Would you expect using a single readers/writer lock as shown above to have better or

worse or the same performance as using synchronized on all methods? Explain – be

specific.

g) What if instead of using a single readers/writer lock on the whole list as shown above,

you used a readers/writer lock on every individual node. We will require that all

operations lock every node they touch in the list until they are done with their operation.

delete, insert, and findAndMove, will lock all nodes in their path for writing,

while find will lock all nodes in its path for reading. Would you expect this to have

better or worse or the same performance as a single lock? Explain why – be specific.

Name: ______________________________

12 of 13

8) [12 points] Sorting

a) Radix Sort: Give a formula for the worst case big-O running time of radix sort. For full

credit, your formula should include all of these variables:

max_value – the values to be sorted range from 0 to max_value

radix – the radix or base to be used in the sort

n – the number of values to be sorted

b) Quicksort: Give the recurrence for each of the following: (Note: We are NOT asking for

the closed form.)

Quicksort (parallel sort & parallel partition) – best case span

Quicksort (parallel sort & parallel partition) – worst case span

c) Give big-O runtimes of the following in terms of n. For parallel sorts, give the span.

________________ Mergesort (sequential) – worst case

________________ Quicksort (parallel sort & parallel partition) – best case span

________________ Quicksort (parallel sort & parallel partition) – worst case span

________________ Quicksort (sequential) – best case

________________ Quicksort (sequential) – worst case

Answer:

Answer:

Answer:

 Name: ______________________________

 13 of 13

9) [5 points] Amortized

a) An Insert operation on a Binary Search Tree (BST) has the following running times (give

your answer in big-O, N is number of items in the BST):

Worst case running time ______________

Average case running time ______________

Amortized running time ______________

b) Your brilliant TAs have come up with a new dictionary called a CSE332-Tree that has the

following characteristics: Worst case running time for a find operation is O(N), Amortized

running time for a find operation is O(1). Running times for insert and delete are the same as

for AVL trees.

You and your partner are implementing an application that does a lot of find operations.

Your partner thinks you should use an AVL tree for your application. Considering only the

runtime of find operations, give an argument for why you should use a CSE332-Tree instead

of an AVL tree?

Considering only the runtime of find operations, describe a situation where you should use

an AVL tree instead of a CSE332-Tree.

10) [8 points] P, NP, NP-Complete

a) “NP” stands for __

b) What does it mean for a problem to be in NP?

c) Give two examples of NP-Complete problems:

________________________________ and __________________________________

d) What should you do if you determine the problem you are trying to solve is NP-complete, yet

you still need to solve it?

