
CSE 332: Data Structures and Parallelism
Section 9: Graphs & Connectivity Solutions
In lecture, we solved the CONN problem. That is,

CONN

Input(s): Graph G
Output: true iff G is connected

We used a WorkList algorithm:

1 isConnected(G) {
2 V, E = G
3 worklist = first(V);
4 seen = {v};
5 while (worklist.hasWork()) {
6 v = worklist.next();
7 for (w : v.neighbors()) {
8 if (w 6∈ seen) {
9 worklist.add(w);

10 seen.add(w);
11 }
12 }
13 }
14 return seen == V;
15 }

This algorithm has several distinct names based on
which type of WorkList we use. If we use a FIFOQueue,
it’s called Breadth-First Search (BFS), and if we use a
Stack, it’s called Depth-First Search (DFS).

0. Recursively, Now!
Although we’ve implemented it here and in lecture iteratively, we could implement DFS recursively as well.
Write Pseudo-code for a DFS that uses recursion.
Solution:

1 dfs(G) {
2 dfs(first(G), {})
3 }
4
5 dfs(v, seen) {
6 if (v ∈ seen) {
7 return;
8 }
9 for (w : v.neighbors()) {

10 seen = seen ∪ {w}
11 dfs(w, seen)
12 }
13 }

1. Two-Coloring
A graph G is two-colorable if and only if we can make a function f : V → {red, black} such that {u, v} ∈
G → f(u) 6= f(v). That is “adjacent vertices have different colors”. Write an algorithm to solve the 2-COLOR
problem.
Solution:
Instead of storing the vertices in a “seen” set, store them in a dictionary from V → {red, black}. Then, attempt
to make a coloring (start with, say black) using a DFS (starting from any vertex). If we try to color a vertex
two different colors, there is no two-coloring. If we finish, it works.
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2. A Social Networking Event
Suppose you have social network data for some people (including yourself and a famous person). Explain how
to use a graph algorithm to find the answers to the following questions:

(a) Find the person with the most friends in the data?

Solution:
Instead of storing the vertices in a “seen” set, store them in a dictionary from V → int. Then, do a
BFS/DFS (starting from any vertex), where we store the number of neighbors when we remove a vertex.
Additionally, as we continue, also store the largest number of neighbors we’ve seen so far (and the vertex
who had those neighbors).

(b) Find the length of the shortest path from yourself to the famous person.

Solution:
Do a BFS starting at yourself. In addition to the normal stopping condition (we’ve seen this vertex before),
stop when we hit the famous person. In the case where we fail to find the famous person, return ∞.
Otherwise, return the number of vertices we’ve seen so far.
Notice that a DFS does not work here! A DFS will return some path, but not necessarily the shortest
one.

(c) Find the number of people who do not know anyone you know.

Solution:
Let S be the set of all people who within distance 2 of yourself. That is, S is the set containing yourself,
your neighbors, and your neighbors’ neighbors. You can find this by doing a modified BFS/DFS that
keeps track of the distance explored as an additional parameter. The answer is then |V | − |S|.
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3. Better Find the Shortest Path Before It Catches You!
Consider the following graph:
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(a) Use Dijkstra’s Algorithm to find the lengths of the shortest paths from a to each of the other vertices.
For full credit, you must show the worklist at every step, but how you show it is up to you.

Solution:

Vertex Cost Done?

a 0 X

b ∞ 05 X

c ∞ 80 08 X

d ∞ 90 03 X

e ∞ 60 13 X

f ∞ 04 X

(b) Are any of the lengths you computed using Dijkstra’s Algorithm in part (a) incorrect? Why or why not?

Solution:
In this case, no. In general, Dijkstra’s Algorithm does not necessarily work correctly with negative edge
weights, but here, it actually returns the right result.

(c) Explain how you would use Dijkstra’s Algorithm to recover the actual paths (rather than just the lengths).

Solution:
Keep an extra dictionary which maps nodes to their predecessors. (A predecessor is the node we took an
edge from to get to the node.) Then, walk from the target vertex back toward the source vertex using
the predecessor map.
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4. It Rhymes with Flopological Sort
Consider the following graph:
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(a) Does this graph have a topological sort? Explain why or why not. If you answered that it does not,
remove the MINIMUM number of edges from the graph necessary for there to be a topological sort and
carefully mark the edge(s) you are removing. Otherwise, just move on to the next part.

Solution:
Yes, it does. This is a DAG (i.e., it has no cycles).

For the remaining parts, work with this (potentially) new version of the graph.

(b) Find a topological sort of the graph. Do not bother showing intermediary work.

Solution:
There are many. One example is e, f, g, h, l, k, a, b, c, j, d, i.

(c) If this graph represented various tasks in a ForkJoin algorithm, what would the work of the algorithm
be assuming each individual task is Θ(1).
Hint: There are 12 tasks. . .

Solution:
There are a constant number of tasks; so, the work is Θ(1).
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