
CSE 332: Data Structures and Parallelism
Section 8: Parallelism and Divide-and-Conquer

0. Multiply and surrender
Consider the following algorithm, which sorts an array in parallel. Write a recurrence for the work and a
recurrence of the span of this program in terms of n, where n is the length of the array.

1 public void parallelSort(int[] arr, int lo, int hi) {
2 if (hi − lo > 1) {
3 int mid = lo + (hi − lo) / 2
4
5 parallelSort(arr, lo, mid)
6 parallelSort(arr, mid, hi)
7
8 // Move the larger of the two sorted regions
9 // to the end

10 if (arr[mid − 1] > arr[hi − 1]) {
11 swap(arr, mid − 1, hi − 1)
12 }
13
14 parallelSort(arr, lo, hi − 1)
15 }
16 }

1



1. Sum of sums
Use the ForkJoin framework to write a parallelized method that returns the sum of every number contained
with the given nested array. For example, if arr is [[0, 1, 2], [3, 4, 5]], then the output is 15.

Your code must have O(mn) work and O(lg(m) + lg(n)) span, where m is the length of arr and n is length
of the largest subarray arr[i].

2. Rotation
Use the ForkJoin framework to write a parallelized method void rotate(int[] arr) that modifies the given
array by rotating each item to the left exactly once (and moving the item at index 0 to the end). For example,
rotating [1, 2, 3, 4] should result in [2, 3, 4, 1]. Find the work and span of your algorithm.

2



3. Underwater
Suppose we’re given an array of integers where each element represents the “height" of a hill viewed from the
side. Now, suppose we have water pouring in at some height h from the left. Write a parallelized algorithm
using the ForkJoin framework that determines if the k-th element is underwater. Your algorithm must have
O(n) work and O(lg(n)) span, where n is the length of the array.

For example, suppose we have an array [3, 1, 2, 5, 3, 2, 1, 7, 2], h = 4, and k = 6. Since hill 3 has
height 5, the water cannot spill further to the right, so we conclude hill k = 6 is NOT underwater.

As a second example, suppose we use the same array and k but set h = 10. Then, hill k (and every other hill)
will be underwater because no hill is taller then 10.

4. Mountains
Given an array a and some index i, a peak element ai is any element where ai is greater then or equal to its
surrounding elements – that is, ai ≥ ai−1 and ai ≥ ai+1.

For example, the array [3, 6, 5, 2, 1, 9, 1] has two peak elements: the 6 and the 9. The array [1, 1,
1, 1, 1] has five peak elements: every item is greater then or equal to the surrounding ones.

Implement a parallelized algorithm using the ForkJoin framework to find the largest peak element in an array.
Find the work and span of your algorithm.

3



5. Mixing Trees
Suppose we have an AVL tree where each node contains a key-value pair, where the key is an int and the value
is a string. Write a parallelized algorithm using the ForkJoin framework that returns an array containing all
key-value pairs where the key is even. Your algorithm should have O(n) work and O(lg(n)) span.

6. Majority
Given an array containing elements of type E, write a parallelized algorithm using the ForkJoin framework to
find the majority element, namely an element that appears than n/2 times. If no majority element exists,
return null. Your algorithm should have O(n lg(n)) work, O(n) span, and use O(1) extra memory.

Note: The items in the array do not implement compareTo. This means you cannot sort the array!

Challenge: Can you find the majority with O(n) work, O(lg(n)) span, and O(1) extra memory?

4



7. Multiplication
(a) Suppose we have two polynomials represented as two int arrays, where the i-th item represents the i-th

coefficient. So, the array [5, 10, 0, 2, -3] would represent the polynomial 5 + 10x+ 2x3 − 3x4.

Write a parallelized algorithm using the ForkJoin framework that returns a new array representing the
product of those two polynomials. You may assume the two input arrays both have length n. A naive
implementation using nested loops will have O(n2) work; your algorithm must be asymptotically better.

Hint: Note that a polynomial A can be written as A0 +A1x
n/2, where A0 is the first n/2 terms and A1

is the latter n/2 terms. This means that A ·B = (A0 +A1x
n/2)(B0 +B1x

n/2). With some algebra, we
can simplify to obtain:

A ·B = A0B0 + ((A0 +A1)(B0 +B1)−A0B0 −A1B1)x
n/2 +A1B1x

n/2

This means that computing the product of A and B requires you to multiply polynomials exactly three
times (note, not 5 times – why?). You should exploit this property when implementing your algorithm.

(b) Write recurrences for the work and span of your algorithm, then find a Big-O bound for both.

5


