CSE 332: Data Structures and Parallelism

QuickCheck: More Parallelism Solutions

0. I like I

Write pseudocode for a parallelized algorithm using the ForkJoin framework that takes an input array containing strings and returns a new array containing only the strings that started with the letter "i".
For example, if the input array is ["ib", "bb", "ic", "zc", "yc", "ic", "iy", "ic], the output array should be ["ib", "ic", "ic", "iy", "ic"].
Find the work and span of your algorithm.

Solution:

Our algorithm will:
(a) Perform a parallel map over the input array to construct a bitmap. If the string at input $[\mathrm{x}]$ starts with ' i ', then the bit at bitmap [x] should be ' 1 '.
Using our initial example array up above, the corresponding bitmap would be $[1,0,1,0,0,1,1$, 1].
This operation will have $\mathcal{O}(n)$ work and $\mathcal{O}(\lg (n))$ span.
(b) Perform a parallel scan over the bitmap, creating a cumulative sum array.

For example, the bitmap up above would result in $[1,1,2,2,2,3,4,5]$
This operation will have $\mathcal{O}(n)$ work and $\mathcal{O}(\lg (n))$ span.
(c) Perform a parallel pack over the cumulative sum array to extract the relevant items from the input array.

This should result in an output of ["ib", "ic", "ic", "iy", "ic"], which is what we wanted.
This operation will also have $\mathcal{O}(n)$ work and $\mathcal{O}(\lg (n))$ span.
Since each operation is performed in sequence, and each has a work of $\mathcal{O}(n)$ and a span of $\mathcal{O}(\lg (n))$, we know the combined work and span will be $\mathcal{O}(n)$ and $\mathcal{O}(\lg (n))$ respectively.

