
CSE 332: Data Structures and Parallelism
Section 3: Recurrences Solutions

0. Big-Oh Bounds for Recurrences
For each of the following, find a Big-Oh bound for the provided recurrence.

(a) T (n) =

{
1 if n = 0

T (n− 1) + 3 otherwise

Solution:
Unrolling the recurrence, we get T (n) = 3 + · · ·+ 3︸ ︷︷ ︸

n times

+1 = 3n+ 1. This is O(n).

(b) T (n) =

{
1 if n = 1

8T (n/2) + 4n2 otherwise

Solution:
Note that a = 8, b = 2, and c = 2. Since lg(8) = 3 > 2, we have T ∈ Θ(nlg(8)) = Θ(n3) by Master
Theorem. Then, by definition of Big-Theta, we also know T ∈ O(n3).

(c) T (n) =

{
1 if n = 1

7T (n/2) + 18n2 otherwise

Solution:
Note that a = 7, b = 2, and c = 2. Since lg(7) = 3 > 2, we have T ∈ Θ(nlg(7)) by Master Theorem.
Then, by definition of Big-Theta, we also know T ∈ O(nlg(7)).

(d) T (n) =

{
1 if n = 1

T (n/2) + 3 otherwise

Solution:
Note that a = 1, b = 2, and c = 0. Since lg(1) = 0 = 2, we have T ∈ Θ(lg(n)) by Master Theorem.
Then, by definition of Big-Theta, we also know T ∈ O(lg(n)).

(e) T (n) =

{
1 if n = 0

T (n− 1) + T (n− 2) + 3 otherwise

Solution:
Note that this recurrence is bounded above by T (n) = 2T (n − 1) + 3. If we unroll that recurrence, we
get 3 + 2(3 + 2(3 + · · ·+ 2(1))).

This is approximately
n∑

i=0

3× 2i = 3(2n+1 − 1) which mean T ∈ O(2n). We can actually find a better

bound (e.g., it’s not the case that T ∈ Ω(2n)).

1

1. Recurrences and Big-Oh Bounds
Consider the function f . Find a recurrence modeling the worst-case runtime of this function and then find a
Big-Oh bound for this recurrence.

1 f(n) {
2 if (n == 0) {
3 return 0
4 }
5
6 int result = 0
7 for (int i = 0; i < n; i++) {
8 for (int j = 0; j < i; j++) {
9 result += j

10
11 }
12 }
13 return f(n/2) + result + f(n/2)
14 }

(a) Find a recurrence T (n) modeling the worst-case time complexity of f(n).

Solution:
We look at the three separate cases (base case, non-recursive work, recursive work). The base case is
O(1), because we only do a return statement. The non-recursive work is O(1) for the assignments and

if tests and
n∑

i=0

i =
n(n+ 1)

2
for the loops. The recursive work is 2T

(
n
2

)
.

Putting these together, we get:

T (n) =

{
1 if n = 1

2T
(
n
2

)
+ n(n+1)

2 otherwise

(b) Find a Big-Oh bound for your recurrence.

Solution:

Note that n(n+ 1)

2
=

n2

2
+

n

2
∈ O(n2). The recursion tree has lg(n) height, each non-leaf node of the

tree does
(n
2i

)2
work, each leaf node does 1 work, and each level has 2i nodes.

So, the total work is
lg(n)∑
i=0

2i
(
n2

2i

)2

+ 1 · 2lgn = n2

lg(n)∑
i=0

(
2i

4i

)
+ n < n2

∞∑
i=0

(
1

2i

)
+ n =

n2

1− 1
2

+ n.

This expression is upper-bounded by n2 so T ∈ O(n2).

2

2. Recurrences and Closed Forms
Consider the function g. Find a recurrence modeling the worst-case runtime of this function, and then find a
closed form for the recurrence.

1 g(n) {
2 if (n <= 1) {
3 return 1000
4 }
5 if (g(n/3) > 5) {
6 for (int i = 0; i < n; i++) {
7 println("Yay!")
8 }
9 return 5 * g(n/3)

10 }
11 else {
12 for (int i = 0; i < n * n; i++) {
13 println("Yay!")
14 }
15 return 4 * g(n/3)
16 }
17 }

(a) Find a recurrence T (n) modeling the worst-case time complexity of g(n).

Solution:

T (n) =

{
1 if n ≤ 1

2T
(
n
3

)
+ n otherwise

(b) Find a closed form for the above recurrence.

Solution:
The recursion tree has height log3(n), each non-leaf level i has work n2i

3i
, and the leaf level has work

2log3(n). Putting this together, we have:
log3(n)−1∑

i=0

(
n2i

3i

)
+ 2log3(n) = n

log3(n)−1∑
i=0

(
2

3

)i

+ nlog3(2)

= n

(
1−

(
2
3

)log3(n)
1− 2

3

)
+ nlog3(2) By finite geometric series

= 3n

(
1−

(
2

3

)log3(n)
)

+ nlog3(2)

= 3n

(
1− nlog3(2)

n

)
+ nlog3(2)

= 3n− 3nlog3(2) + nlog3(2)

= 3n− 2nlog3(2)

3

3. Output Complexity and Runtime Complexity
Consider the function h:

1 h(n) {
2 if (n <= 1) {
3 return 1
4 } else {
5 return h(n/2) + n + 2*h(n/2)
6 }
7 }

(a) Find a recurrence T (n) modeling the worst-case runtime complexity of h(n).

Solution:
T (n) =

{
1 if n ≤ 1

2T
(
n
2

)
+ 1 otherwise

(b) Find a closed form to your answer for (a).

Solution:
The recursion tree has height lg(n), each non-leaf level i has has work 2i, and the leaf level has work
2lg(n). Putting this together, we have:(

lgn−1∑
i=0

2i

)
+ 2lg(n) =

(
lgn−1∑
i=0

2i

)
+ n =

1− 2lgn−1+1

1− 2
+ n

= 2lgn − 1 + n

= (n− 1) + n

= 2n− 1

(c) Find an exact recurrence for the output of h(n).

Solution:
h(n) =

{
1 if n ≤ 1

3h
(
n
2

)
+ n otherwise

(d) Find a closed form to your answer for (c).

Solution:
The recursion tree has height lg(n), each non-leaf level i has has work

(
3
2

)i · n, and the leaf level has
work 1 · 3lg(n). Putting this together, we have:

lgn−1∑
i=0

(
3

2

)i

· n+ 1 · 3lg(n) = n

lgn−1∑
i=0

(
3

2

)i

+ 3lg(n) = n

(
1−

(
3
2

)lgn−1+1

1− 3
2

)
+ 3lg(n)

= −2n

(
1−

(
3

2

)lgn
)

+ 3lg(n)

= 2n · 3lgn ·
(
1

2

)lgn

− 2n+ 3lg(n)

= 2n · 3lgn · 1
n
− 2n+ 3lg(n)

= 3 · nlg 3 − 2n

4

