CSE 332: Data Structures and Parallelism

Section 3: Recurrences Solutions

0. Big-Oh Bounds for Recurrences
For each of the following, find a Big-Oh bound for the provided recurrence.

1 ifn=0
(a) T(n) = {T(n —1)+3 otherwise

Solution:
Unrolling the recurrence, we get T'(n) =3+ ---+ 341 =3n+ 1. Thisis O(n).
N——

n times
1 ifn=1
(b) T(n) = 2 .
8T (n/2) + 4n* otherwise

Solution:

Note that a = 8, b = 2, and ¢ = 2. Since 1g(8) = 3 > 2, we have T € O(n'8®)) = ©(n?) by Master
Theorem. Then, by definition of Big-Theta, we also know 7' € O(n?).

. T(n):{1 ifn =1

7T(n/2) + 18n2 otherwise

Solution:

Note that @ = 7, b = 2, and ¢ = 2. Since 1g(7) = 3 > 2, we have T' € ©(n'¢(")) by Master Theorem.
Then, by definition of Big-Theta, we also know T' € O(n'e(").

@ T(n)_{1 ifn=1

T(n/2) +3 otherwise

Solution:

Note that a = 1, b = 2, and ¢ = 0. Since lg(1) = 0 = 2, we have T € ©(lg(n)) by Master Theorem.
Then, by definition of Big-Theta, we also know 7" € O(lg(n)).

1 ifn=0
(e) T(n) = {T(n —1)+T(n—2)+3 otherwise

Solution:

Note that this recurrence is bounded above by T'(n) = 2T (n — 1) + 3. If we unroll that recurrence, we
get 3+ 2(3+2(3+ - +2(1))).

n

This is approximately ZB x 2 = 3(2"*1 — 1) which mean T € O(2"). We can actually find a better
i=0

bound (e.g., it's not the case that T' € 2(2")).



1. Recurrences and Big-Oh Bounds

Consider the function f. Find a recurrence modeling the worst-case runtime of this function and then find a
Big-Oh bound for this recurrence.

1 f(n) {

2 if (n == 0) {

3 return 0

4 }

5

6 int result = 0

7 for (int i = 0; i < n; i++) {

8 for (int j = 0; j < i; j++) {
9 result += j

10

11 }

12 }

13 return f(n/2) + result + f(n/2)
14 }

(a)

Find a recurrence T'(n) modeling the worst-case time complexity of f(n).

Solution:
We look at the three separate cases (base case, non-recursive work, recursive work). The base case is
O(1), because we only do a return statement. The non-recursive work is O(1) for the assignments and
n
. onn+1 . .
if tests and Zz = (2) for the loops. The recursive work is 27°(%).
i=0
Putting these together, we get:

T( ) 1 ifn=1
n)=
2T(%) + w otherwise

Find a Big-Oh bound for your recurrence.

Solution:
nn+1) n? n 2 _ .
—5 =3 + 5 € O(n®). The recursion tree has lg(n) height, each non-leaf node of the

2 .
tree does (%) work, each leaf node does 1 work, and each level has 2¢ nodes.

lg(n) ' n2 2 Ig(n) 21 o0 1 n2
So, the total work is 221 <21> +1-28" = p? Z (41> +n<n2z <21) tn= 1_1 +n.
i=0 i=0

1=0

Note that

This expression is upper-bounded by n? so T € O(n?).



2. Recurrences and Closed Forms
Consider the function g. Find a recurrence modeling the worst-case runtime of this function, and then find a
closed form for the recurrence.

1 g(n) {

2 if (n <=1) {

3 return 1000

4 b

5 if (g(n/3) > 5) {

6 for (int 1 = 0; i < n; i++) {
7 println("Yay!")

8 }

9 return 5 * g(n/3)

10 }

11 else {

12 for (int 1 = 0; i < n * n; i++) {
13 println("Yay!")

14 }

15 return 4 x g(n/3)

16 }

17 }

(a) Find a recurrence T'(n) modeling the worst-case time complexity of g(n).

Solution:

2T(%) +n otherwise

T(n):{l ifn <1

(b) Find a closed form for the above recurrence.

Solution:

n2?

5, and the leaf level has work

The recursion tree has height logs(n), each non-leaf level i has work
2logs(n) - Puytting this together, we have:

logg(n)—1 n22‘ logy (n) logz(n)—1 2 7 log (2)
Z 3 + 2083\ = =] +no8s
1=0 i




3. Output Complexity and Runtime Complexity
Consider the function h:

h(n) {
if (n <=1) {

}

return 1

} else {

}

(a)

return h(n/2) + n + 2xh(n/2)

Find a recurrence T'(n) modeling the worst-case runtime complexity of h(n).

Solution: ) P
T(n) = e
2T(%) +1 otherwise

Find a closed form to your answer for (a).

Solution:

The recursion tree has height Ig(n), each non-leaf level i has has work 2%, and the leaf level has work
212(") " Putting this together, we have:

lgn—1 - lgn—1 1 — olgn—1+1

i lg(n) _ i - - _
e
1= 1=

=2%"_1+n
=(n—-1)+n
=2n-1
Find an exact recurrence for the output of h(n).
Solution: ) e
h(n) = =
3h(%) +n otherwise

Find a closed form to your answer for (c).

Solution:

The recursion tree has height lg(n), each non-leaf level i has has work (%)Z -n, and the leaf level has
work 1 - 3'8(")_ Putting this together, we have:

lgn—1 3 i lgn—1 3 i 1— (3)lgn71+1
2 . 1.3le(n) — 2 lgn) — (2 \2/ Ig(n)
Z <2> n+1-3 n Z <2> +3 n 1 % +3

=0 i=0



