CSE 332: Data Structures and Parallelism

Section 3: Recurrences Solutions

0. Big-Oh Bounds for Recurrences

For each of the following, find a Big-Oh bound for the provided recurrence.
(a) $T(n)= \begin{cases}1 & \text { if } n=0 \\ T(n-1)+3 & \text { otherwise }\end{cases}$

Solution:

Unrolling the recurrence, we get $T(n)=\underbrace{3+\cdots+3}_{n \text { times }}+1=3 n+1$. This is $\mathcal{O}(n)$.
(b) $T(n)= \begin{cases}1 & \text { if } n=1 \\ 8 T(n / 2)+4 n^{2} & \text { otherwise }\end{cases}$

Solution:

Note that $a=8, b=2$, and $c=2$. Since $\lg (8)=3>2$, we have $T \in \Theta\left(n^{\lg (8)}\right)=\Theta\left(n^{3}\right)$ by Master Theorem. Then, by definition of Big-Theta, we also know $T \in \mathcal{O}\left(n^{3}\right)$.
(c) $T(n)= \begin{cases}1 & \text { if } n=1 \\ 7 T(n / 2)+18 n^{2} & \text { otherwise }\end{cases}$

Solution:

Note that $a=7, b=2$, and $c=2$. Since $\lg (7)=3>2$, we have $T \in \Theta\left(n^{\lg (7)}\right)$ by Master Theorem. Then, by definition of Big-Theta, we also know $T \in \mathcal{O}\left(n^{\lg (7)}\right)$.
(d) $T(n)= \begin{cases}1 & \text { if } n=1 \\ T(n / 2)+3 & \text { otherwise }\end{cases}$

Solution:

Note that $a=1, b=2$, and $c=0$. Since $\lg (1)=0=2$, we have $T \in \Theta(\lg (n))$ by Master Theorem. Then, by definition of Big-Theta, we also know $T \in \mathcal{O}(\lg (n))$.
(e) $T(n)= \begin{cases}1 & \text { if } n=0 \\ T(n-1)+T(n-2)+3 & \text { otherwise }\end{cases}$

Solution:

Note that this recurrence is bounded above by $T(n)=2 T(n-1)+3$. If we unroll that recurrence, we get $3+2(3+2(3+\cdots+2(1)))$.
This is approximately $\sum_{i=0}^{n} 3 \times 2^{i}=3\left(2^{n+1}-1\right)$ which mean $T \in \mathcal{O}\left(2^{n}\right)$. We can actually find a better bound (e.g., it's not the case that $T \in \Omega\left(2^{n}\right)$).

1. Recurrences and Big-Oh Bounds

Consider the function f. Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh bound for this recurrence.

```
f(n) {
    if (n == 0) {
        return 0
    }
    int result = 0
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < i; j++) {
            result += j
        }
    }
    return f(n/2) + result + f(n/2)
}
```

(a) Find a recurrence $T(n)$ modeling the worst-case time complexity of $f(n)$.

Solution:

We look at the three separate cases (base case, non-recursive work, recursive work). The base case is $\mathcal{O}(1)$, because we only do a return statement. The non-recursive work is $\mathcal{O}(1)$ for the assignments and if tests and $\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$ for the loops. The recursive work is $2 T\left(\frac{n}{2}\right)$.
Putting these together, we get:

$$
T(n)= \begin{cases}1 & \text { if } n=1 \\ 2 T\left(\frac{n}{2}\right)+\frac{n(n+1)}{2} & \text { otherwise }\end{cases}
$$

(b) Find a Big-Oh bound for your recurrence.

Solution:

Note that $\frac{n(n+1)}{2}=\frac{n^{2}}{2}+\frac{n}{2} \in \mathcal{O}\left(n^{2}\right)$. The recursion tree has $\lg (n)$ height, each non-leaf node of the tree does $\left(\frac{n}{2^{i}}\right)^{2}$ work, each leaf node does 1 work, and each level has 2^{i} nodes.
So, the total work is $\sum_{i=0}^{\lg (n)} 2^{i}\left(\frac{n^{2}}{2^{i}}\right)^{2}+1 \cdot 2^{\lg n}=n^{2} \sum_{i=0}^{\lg (n)}\left(\frac{2^{i}}{4^{i}}\right)+n<n^{2} \sum_{i=0}^{\infty}\left(\frac{1}{2^{i}}\right)+n=\frac{n^{2}}{1-\frac{1}{2}}+n$.
This expression is upper-bounded by n^{2} so $T \in \mathcal{O}\left(n^{2}\right)$.

2. Recurrences and Closed Forms

Consider the function g. Find a recurrence modeling the worst-case runtime of this function, and then find a closed form for the recurrence.

```
g(n) {
    if (n <= 1) {
        return 1000
    }
    if (g(n/3) > 5) {
    for (int i = 0; i < n; i++) {
        println("Yay!")
    }
    return 5 * g(n/3)
    }
    else {
        for (int i = 0; i < n * n; i++) {
            println("Yay!")
        }
        return 4*g(n/3)
    }
}
```

(a) Find a recurrence $T(n)$ modeling the worst-case time complexity of $g(n)$.

Solution:

$$
T(n)= \begin{cases}1 & \text { if } n \leq 1 \\ 2 T\left(\frac{n}{3}\right)+n & \text { otherwise }\end{cases}
$$

(b) Find a closed form for the above recurrence.

Solution:

The recursion tree has height $\log _{3}(n)$, each non-leaf level i has work $\frac{n 2^{i}}{3^{i}}$, and the leaf level has work $2^{\log _{3}(n)}$. Putting this together, we have:

$$
\begin{aligned}
\sum_{i=0}^{\log _{3}(n)-1}\left(\frac{n 2^{i}}{3^{i}}\right)+2^{\log _{3}(n)} & =n \sum_{i=0}^{\log _{3}(n)-1}\left(\frac{2}{3}\right)^{i}+n^{\log _{3}(2)} \\
& =n\left(\frac{1-\left(\frac{2}{3}\right)^{\log _{3}(n)}}{1-\frac{2}{3}}\right)+n^{\log _{3}(2)} \quad \text { By finite geometric series } \\
& =3 n\left(1-\left(\frac{2}{3}\right)^{\log _{3}(n)}\right)+n^{\log _{3}(2)} \\
& =3 n\left(1-\frac{n^{\log _{3}(2)}}{n}\right)+n^{\log _{3}(2)} \\
& =3 n-3 n^{\log _{3}(2)}+n^{\log _{3}(2)} \\
& =3 n-2 n^{\log _{3}(2)}
\end{aligned}
$$

3. Output Complexity and Runtime Complexity

Consider the function h :

h(n) \{
if ($\mathrm{n}<=1$) \{
return 1
\} else \{
return $h(n / 2)+n+2 * h(n / 2)$
\}
\}
(a) Find a recurrence $T(n)$ modeling the worst-case runtime complexity of $h(n)$.

Solution:

$$
T(n)= \begin{cases}1 & \text { if } n \leq 1 \\ 2 T\left(\frac{n}{2}\right)+1 & \text { otherwise }\end{cases}
$$

(b) Find a closed form to your answer for (a).

Solution:

The recursion tree has height $\lg (n)$, each non-leaf level i has has work 2^{i}, and the leaf level has work $2^{\lg (n)}$. Putting this together, we have:

$$
\begin{aligned}
\left(\sum_{i=0}^{\lg n-1} 2^{i}\right)+2^{\lg (n)}=\left(\sum_{i=0}^{\lg n-1} 2^{i}\right)+n & =\frac{1-2^{\lg n-1+1}}{1-2}+n \\
& =2^{\lg n}-1+n \\
& =(n-1)+n \\
& =2 n-1
\end{aligned}
$$

(c) Find an exact recurrence for the output of $h(n)$.

Solution:

$$
h(n)= \begin{cases}1 & \text { if } n \leq 1 \\ 3 h\left(\frac{n}{2}\right)+n & \text { otherwise }\end{cases}
$$

(d) Find a closed form to your answer for (c).

Solution:

The recursion tree has height $\lg (n)$, each non-leaf level i has has work $\left(\frac{3}{2}\right)^{i} \cdot n$, and the leaf level has work $1 \cdot 3^{\lg (n)}$. Putting this together, we have:

$$
\begin{aligned}
\sum_{i=0}^{\lg n-1}\left(\frac{3}{2}\right)^{i} \cdot n+1 \cdot 3^{\lg (n)}=n \sum_{i=0}^{\lg n-1}\left(\frac{3}{2}\right)^{i}+3^{\lg (n)} & =n\left(\frac{1-\left(\frac{3}{2}\right)^{\lg n-1+1}}{1-\frac{3}{2}}\right)+3^{\lg (n)} \\
& =-2 n\left(1-\left(\frac{3}{2}\right)^{\lg n}\right)+3^{\lg (n)} \\
& =2 n \cdot 3^{\lg n} \cdot\left(\frac{1}{2}\right)^{\lg n}-2 n+3^{\lg (n)} \\
& =2 n \cdot 3^{\lg n} \cdot \frac{1}{n}-2 n+3^{\lg (n)} \\
& =3 \cdot n^{\lg 3}-2 n
\end{aligned}
$$

