CSE 332: Data Structures and Parallelism

QuickCheck: Recurrences Solutions (due Thursday, January 19)

Master Theorem

Consider a recurrence of the form

$$
T(n)= \begin{cases}d & \text { if } n=1 \\ a T\left(\frac{n}{b}\right)+n^{c} & \text { otherwise }\end{cases}
$$

Then,

- If $\log _{b}(a)<c$ then $T \in \Theta\left(n^{c}\right)$
- If $\log _{b}(a)=c$ then $T \in \Theta\left(n^{c} \lg (n)\right)$
- If $\log _{b}(a)>c$ then $T \in \Theta\left(n^{\log _{b}(a)}\right)$

0. Sum Sum Sum

Consider the following code:

```
f(n) {
    if (n == 0) {
        return 0
    }
    int result = 0
    for (int i = 0; i < n; i++) {
        result += i * i + n
    }
    return f(n/3) + 2 * result + 3*f(n/3)
}
```

(a) Find a recurrence $T(n)$ modeling the worst-case time complexity of $f(n)$.

Solution:

We look at the three separate cases (base case, non-recursive work, recursive work). The base case is $\mathcal{O}(1)$, because we only do a return statement. The non-recursive work is $\mathcal{O}(1)$ for the assignments and if tests and $\sum_{i=0}^{n-1} 1=n$ for the loop. The recursive work is $2 T\left(\frac{n}{3}\right)$.
Putting these together, we get:

$$
T(n)= \begin{cases}1 & \text { if } n=0 \\ 2 T\left(\frac{n}{3}\right)+n & \text { otherwise }\end{cases}
$$

(b) Find a Big-Oh bound for your recurrence.

Solution:

Since we are asked to only find a Big-Oh bound, and strictly speaking don't need to find a closed form, we can use the Master Theorem to find our answer.
Note that $a=2, b=3$, and $c=1$. We see that $\log _{b}(a)=\log _{3}(2)<1=c$, so know that $T \in \Theta\left(n^{1}\right)$ by the Master Theorem.
By definition of Big-Theta, we also know that $T \in \mathcal{O}(n)$ must be true.

