
CSE 332: Data Structures and Parallelism

QuickCheck: Recurrences Solutions (due Thursday, January 19)

Master Theorem
Consider a recurrence of the form

T (n) =

{
d if n = 1

aT
(
n
b

)
+ nc otherwise

Then,

• If logb(a) < c then T ∈ Θ(nc)

• If logb(a) = c then T ∈ Θ(nc lg(n))

• If logb(a) > c then T ∈ Θ(nlogb(a))

0. Sum Sum Sum
Consider the following code:

1 f(n) {
2 if (n == 0) {
3 return 0
4 }
5 int result = 0
6 for (int i = 0; i < n; i++) {
7 result += i * i + n
8 }
9 return f(n/3) + 2 * result + 3 * f(n/3)

10 }

(a) Find a recurrence T (n) modeling the worst-case time complexity of f(n).

Solution:
We look at the three separate cases (base case, non-recursive work, recursive work). The base case is
O(1), because we only do a return statement. The non-recursive work is O(1) for the assignments and if

tests and
n−1∑
i=0

1 = n for the loop. The recursive work is 2T
(n
3

)
.

Putting these together, we get:

T (n) =

{
1 if n = 0

2T
(
n
3

)
+ n otherwise

(b) Find a Big-Oh bound for your recurrence.

Solution:
Since we are asked to only find a Big-Oh bound, and strictly speaking don’t need to find a closed form,
we can use the Master Theorem to find our answer.

Note that a = 2, b = 3, and c = 1. We see that logb(a) = log3(2) < 1 = c, so know that T ∈ Θ(n1) by
the Master Theorem.

By definition of Big-Theta, we also know that T ∈ O(n) must be true.

1


