CSE 332: Data Structures and Parallelism

Section 2: Heaps and Asymptotics

0. Big-Oh Proofs
For each of the following, prove that f € O(g).

(a) f(n) =1n 9(n) =15
(b) f(n) = 1000 g(n) = 3n3
f(n) =%+ 3n g(n) =n?

(d) f(n)=n+2nlgn gn) =nlgn

1. Is Your Program Running? Better Catch It!

For each of the following, determine the tight O(-) bound for the worst-case runtime in terms of the free variables
of the code snippets.

(a)
1 int x =0 (b)
2 for.(lntll =n; i>=0; i—) { 1 int x = 0
3 if ((1i % 3) ==0) {
4 break 2 for (1nt'1 =0; i<n; i++) {
5 } 3 for (int j =0; j < (n *n / 3); j++) {
4 X +=]
6 else { 5 }
7 X +=n 6 }
8 }
9 }
(d)
(C) 1 int X.= 0
2 for (int i =0; i < n; i++) {
1 int x =0 3 if (n < 100000) {
2 for (int i = 0; 1 < n; i++) { 4 for (int j =0; j <1 *x i % n; j++) {
3 for (int j = 0; j < i; j++) { 5 X += 1
4 X += j 6 }
5 } 7 } else {
6 } 8 X +=1
9 }
10 }
(e)

1 int x =0

2 for (int i = 0; i < n; i++) {

3 if (1 %5 ==20) {

4 for (int j = 0; j < n; j++) {

5 if (i == 3j) {

6 for (int k = 0; k < n; k++) {
7 X +=1 % j x Kk

8

}

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18

2. Asymptotics Analysis

Consider the following method which finds the number of unique Strings within a given array of length n.

int numUnique(String[] values) {
boolean[] visited = new boolean[values.length]
for (int i = 0; i < values.length; i++) {
visited[i] = false
b
int out = 0
for (int i = 0; i < values.length; i++) {
if (!visited[i]) {
out += 1
for (int j = i; j < values.length; j++) {
if (values[i].equals(values[j])) {
visited[j] = true
}
I
}
}
return out;
}

Determine the tight O(-), ©(+), and ©(-) bounds of each function below. If there is no O(-) bound, explain why.
Start by (1) constructing an equation that models each function then (2) simplifying and finding a closed form.

(a) f(n) = the worst-case runtime of numUnique

(b) g(n) = the best-case runtime of numUnique

(c) h(n) = the amount of memory used by numUnique (the space complexity)

(d) k(n) = the integer numUnique will return (the output complexity)

3. Analyzing Data Structures

(a) Suppose we have a worklist 1ist which contains n integers. The following code creates a heap which
contains only the 25 largest elements:

PriorityWorkList<Integer> heap = new MinFourHeap<Integer>()
while (list.hasWork()) {
if (heap.size() >= 25) {
heap.removeMin()
}
heap.add(list.next())

~No o WN =

}

Determine the tight O(-) bounds for the worst-case runtime complexity and the space complexity of this
code snippet. Assume that the given worklist of integers has ©(1) runtime for hasWork () and next().

(b) Suppose we have a worklist 1ist which contains ¢ strings, where each string has an average length s.
Let k indicate the total number of unique characters in the strings. The following code creates a map
containing how frequently any given character appears in all of the strings:

1 Map<Character, Integer> frequencies = new HashMap<Character, Integer>()
2 while (list.hasWork()) {

3 String word = list.next()

4 for (int i = 0; i < word.size(); i++) {

5 char ¢ = word.charAt (i)

6 if (!frequencies.containsKey(c)) {

7 frequencies.put(c, 0)

8 }

9 frequencies.put(c, 1 + frequencies.get(c))

0
1

}

Determine the tight ©(-) bounds for the worst-case runtime complexity and space complexity of this snippet
of code. Assume the given worklist of strings has ©(lg(¢)) runtime for hasWork() and next ().

4. Oh Snap!

For each question below, explain what's wrong with the provided answer. The problem might be the reasoning,
the conclusion, or both!
(a) Determine the tight ©(-) bound for the worst-case runtime of the following piece of code:

1 public static int waddup(int n) {

2 if (n > 10000) {

3 return n

4 } else {

5 for (int i = 0; i < n; i++) {

6 System.out.println("It's dat boi!")
7 }

8 return 0

9 }

10 }

Bad answer: The runtime of this function is O(n), because when searching for an upper bound, we always
analyze the code branch with the highest runtime. We see the first branch is O(1), but the second branch
is O(n).

(b) Determine the tight ©(-) worst-case runtime of the following piece of code:

1 public static void trick(int n) {

2 for (int i = 0; i < Math.pow(2, n); 1 x= 2) {

3 for (int j = 0; j < n; j++) {

4 System.out.printin("(" + i+ "," + j + ")")
5 }

6 }

7}

Bad answer: The runtime of this function is O(n?), because the outer loop is conditioned on an expression
with n and so is the inner loop.

5. Look Before You Heap
(a) Insert 10, 7, 15, 17, 12, 20, 6, 32 into a min heap.

Now, insert the same values into a max heap.

Now, insert the same values into a min heap, but use Floyd's buildHeap algorithm.

(b) Insert 1, 0, 1, 1, 0 into a min heap.

