
Analyzing insert’s Average Case 6

Suppose a heap has n nodes.
How many nodes on the bottom level?

n

2
And the level above? n

4
etc.

Suppose we have a random value, x, in the heap.
How often is x in the bottom level? 1

2 of the time
And the level above? 1

4 of the time
etc.

So, putting these things together, we see that for a random value x,
there’s a 1

2 probability we compare once, a 1
4 probability we compare

twice, etc.
Taking a weighted average (expected value) gives us:

Average # of Compares < 1
2
+ 2

4
+ 3

8
+ ⋅ ⋅ ⋅ = ∞�

i=0

i

2i

= 2

This is O(1)!



Analyzing insert’s Average Case 6

Suppose a heap has n nodes.
How many nodes on the bottom level? n

2
And the level above? n

4
etc.

Suppose we have a random value, x, in the heap.
How often is x in the bottom level?

1
2 of the time

And the level above? 1
4 of the time

etc.
So, putting these things together, we see that for a random value x,
there’s a 1

2 probability we compare once, a 1
4 probability we compare

twice, etc.
Taking a weighted average (expected value) gives us:

Average # of Compares < 1
2
+ 2

4
+ 3

8
+ ⋅ ⋅ ⋅ = ∞�

i=0

i

2i

= 2

This is O(1)!



Changing the ADT. . . 8

What else can we do with a heap?
Given a particular index i into the array. . .

decreaseKey(i, newPriority): Change priority, percolate up

increaseKey(i, newPriority): Change priority, percolate down

remove(i): Call decreaseKey(i, −∞), then deleteMin

What are the running times of these operations?

They’re all worst case O(lgn), but decreaseKey is average O(1).



Correctness of Floyd’s buildHeap 19

1 void buildHeap(int[] input) {
2 for (i = (size + 1)/2; i >= 0; i−−) {
3 percolateDown(i);
4 }
5 }

The algorithm seems to work. Let’s prove it:
To prove that it works, we’ll prove the following:

Before loop iteration i, all arr[j] where j > n�2− i have the heap
property

Formally, we’d do this by induction. Here’s a sketch of the proof:
Base Case: All j > (size + 1) / 2 have no children.
Induction Step:
We know that percolateDown preserves the heap property and
makes its argument also have the heap property. So, after the (i+1)st
iteration, we know i is less than all its children and by the IH, we know
that all of the children past arr[i] already had the heap property
(and percolateDown didn’t break it).

So, since the loop ends with index 0, once we’re done all the elements of
the array will have the heap property.



E�ciency of Floyd’s buildHeap 20

1 void buildHeap(int[] input) {
2 for (i = (size + 1)/2; i >= 0; i−−) {
3 percolateDown(i);
4 }
5 }

Was this even worth the e�ort?
The loop runs n�2 iterations and each one is O(lgn); so, the algorithm isO(n lgn).

This is certainly true, but it’s not W(n lgn). . .

A Tighter Analysis
On the second lowest level there are n

22 elements and each one can
percolate at most 1 time
On the third lowest level there are n

23 elements and each one can
percolate at most 2 times
. . .

Putting this together, the largest possible number of swaps is:
k�

i=1

ni

2i+1 < n

2
�∞�

i=1

i

2i

� = 2n

2
= n


	Reviewing Heap Representation
	Heap Operations, Again
	buildHeap

