Suppose a heap has n nodes.

How many nodes on the bottom level?

Suppose a heap has n nodes.

- \blacksquare How many nodes on the bottom level? $\frac{n}{2}$
- And the level above? $\frac{n}{4}$
- etc.

Suppose we have a random value, x, in the heap. f

 \blacksquare How often is x in the bottom level?

What else can we do with a heap?

Given a particular index i into the array. . .

- decreaseKey(i, newPriority): Change priority, percolate up
- increaseKey(i, newPriority): Change priority, percolate down
- remove(i): Call decreaseKey(i, $-\infty$), then deleteMin

What are the running times of these operations?

Correctness of Floyd's buildHeap

5

The algorithm seems to work. Let's **prove it**: To prove that it works, we'll prove the following:

property

- Formally, we'd do this by induction. Here's a sketch of the proof:
 - Base Case: All j > (size + 1) / 2 have no children.
- Induction Step:
 We know that percolateDown preserves the heap property and makes its argument also have the heap property. So, after the (i+1)st iteration, we know i is less than all its children and by the IH, we know that all of the children past arr[i] already had the heap property

Before loop iteration i, all arr[j] where j > n/2 - i have the heap

(and percolateDown didn't break it). So, since the loop ends with index 0, once we're done all the elements of the array will have the heap property.

```
1 void buildHeap(int[] input) {
2    for (1 = (size + 1)/2; i >= 0; i--) {
3        percotateDown(i):
4    }
5    }
```

Was this even worth the effort?

```
The loop runs n/2 iterations and each one is \mathcal{O}(\lg n); so, the algorithm is \mathcal{O}(n \lg n).
```