
PriorityQueues! 2

PriorityQueue ADT

insert(val) Adds val to the queue.
deleteMin() Returns the highest priority item not already returned by

a deleteMin. (Errors if empty.)
findMin() Returns the highest priority item not already returned by

a deleteMin. (Errors if empty.)
isEmpty() Returns true if all inserted elements have been returned by

a deleteMin.

Data in PriorityQueues must be comparable (by priority)!
Highest Priority = Lowest Priority Value
The ADT does not specify how to deal with ties!

insert����→
A (p:3)

B (p:2)

C (p:4)

D (p:7)
deleteMin�����→

findMin

→ B

deleteMin

→ B

insert(E (p:1))
deleteMin

→ E

deleteMin

→ A



Implementing A Priority Queue 3

For each of the following potential implementations, what is the worst
case runtime for insert and deleteMin? Assume all arrays do not need
to resize.

Unsorted Array

Insert by inserting at the end which is O(1)
deleteMin by linear search which is O(n)

Unsorted Linked List

Insert by inserting at the front which is O(1)
deleteMin by linear search which is O(n)

Sorted Circular Array List

Insert by binary search; shifting elements which is O(n)
deleteMin by moving front which is O(1)

Sorted Linked List

Insert by linear search which is O(n)
deleteMin by remove at front which is O(1)

Binary Search Tree

Insert by search which is O(n)
deleteMin by findMin which is O(n)



A New Data Structure: Heap 4

Recall BSTs

4

2

3

7

6

5

9

8 10

BST Property:
Left Children are smaller
Right Children are larger

For a PriorityQueue, how could we store the items in a tree?

And Now, Heaps

2

4

5

6 8

3

7

10 9

Heap Property:
All Children are larger

Structure Property:
Insist the tree has no “gaps”



A New Data Structure: Heap 4

Recall BSTs

4

2

3

7

6

5

9

8 10

BST Property:
Left Children are smaller
Right Children are larger

For a PriorityQueue, how could we store the items in a tree?

And Now, Heaps

2

4

5

6 8

3

7

10 9

Heap Property:
All Children are larger

Structure Property:
Insist the tree has no “gaps”



Is It A Heap? 5

For each of the following, is it a heap?

4

2

3

5

7

6 9

10

8

No, it fails both properties.

2

3

4

5

No, it fails the structure prop-

erty. But 5 is.

4

5

7 8

6

9

Yup! It’s a heap.

4

5

9 8

6

7

Yup! It’s a heap.



Heap Properties? 6

4

5

7 8

6

9

Where is the minimum item in a heap?
It’s at the top!

What is the height of a heap with n items?

Suppose that there are k levels in the heap.

Then, n ≈ k−1�
i=0

2i = 2k −1. So, lgn ≈ lg(2k −1) ≈ lg(2k) = k = h+1.

How do we implement a PriorityQueue as a Heap?
findMin is easy, but . . . deleteMin? insert?



Implementing deleteMin For a Heap 7

Find the min:
4

5

7 8

6

9

Remove the min and fill the hole with the last child
?

5

7 8

6

9

�����→
9

5

7 8

6

“Percolate Down” to fix the invariant:
9

5

7 8

6
...����→

5

7

9 8

6



Implementing deleteMin For a Heap 7

Find the min:
4

5

7 8

6

9

Remove the min and fill the hole with the last child
?

5

7 8

6

9

�����→
9

5

7 8

6

“Percolate Down” to fix the invariant:
9

5

7 8

6
...����→

5

7

9 8

6



Implementing insert For a Heap 10

Let’s try insert(1):
Where do we put a new item?

4

5

7 8

6

9

Fill our new hole with 1:
4

5

7 8

6

9 1

“Percolate Up” to fix the invariant:
4

5

7 8

6

9 1

...����→
1

5

7 8

4

9 6



And. . . how do we implement Heap? 13

We’ve insisted that the tree be complete to be a valid Heap. Why?

A
0

B
1

D
3

H
7

I
8

E
4

J
9

K
10

C
2

F
5

L
11

G
6

Fill in an array in level-order of the tree:
heap: A B C D E F G H I J K L 0 0 0

h[0] h[1] h[2] h[3] h[4] h[5] h[6] h[7] h[8] h[9] h[10] h[11] h[12] h[13] h[14]

If I have the node at index i, how do I get its:

Parent? 3→ 1, 4→ 1, 10→ 4, 9→ 4, 1→ 0
This indicates that it’s approximately n�2. In fact, it’s n−1

2
.

Left Child? 2(n+1)−1
Right Child? 2(n+1)



And. . . how do we implement Heap? 13

We’ve insisted that the tree be complete to be a valid Heap. Why?

A
0

B
1

D
3

H
7

I
8

E
4

J
9

K
10

C
2

F
5

L
11

G
6

Fill in an array in level-order of the tree:
heap: A B C D E F G H I J K L 0 0 0

h[0] h[1] h[2] h[3] h[4] h[5] h[6] h[7] h[8] h[9] h[10] h[11] h[12] h[13] h[14]

If I have the node at index i, how do I get its:
Parent? 3→ 1, 4→ 1, 10→ 4, 9→ 4, 1→ 0
This indicates that it’s approximately n�2. In fact, it’s n−1

2
.

Left Child? 2(n+1)−1
Right Child? 2(n+1)


	PriorityQueues
	Heaps

