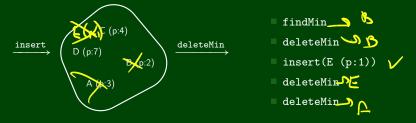
PriorityQueue ADT

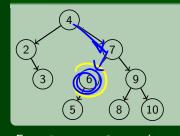
insert(val)	Adds val to the queue.
deleteMin()	Returns the highest priority item not already returned by a deleteMin. (Errors if empty.)
findMin()	Returns the highest priority item not already returned by a deleteMin. (Errors if empty.)
isEmpty()	Returns true if all inserted elements have been returned by a deleteMin.

- Data in PriorityQueues must be comparable (by priority)!
- \blacksquare Highest Priority = Lowest Priority Value
- The ADT does not specify how to deal with ties!



For each of the following potent case runtime for insert and de to resize.		
Unsorted Array	0 (1)	(n)
□ Unsorted Linked List	٥(١)	orn)
Sorted Circular Array List	d (19n)	9(1)
Sorted Linked List	a(h)	3(1)
■ Binary Search Tree	्रिक्री	017)
	0 (11)	

Recall BSTs

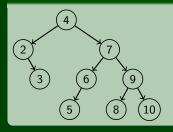


BST Property:

<u>Left Children</u> are smaller Right Children are larger

For a PriorityQueue, how could we store the items in a tree?

Recall BSTs

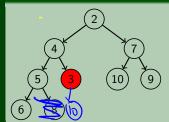


BST Property:

<u>Left Children</u> are smaller Right Children are larger

For a PriorityQueue, how could we store the items in a tree?

And Now, Heaps

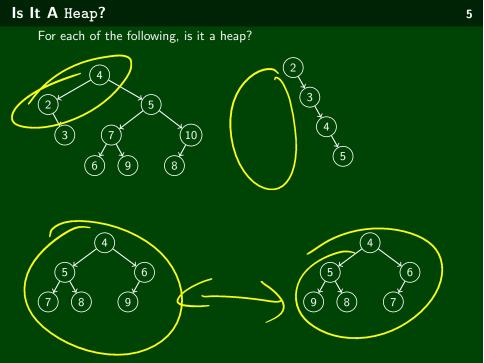


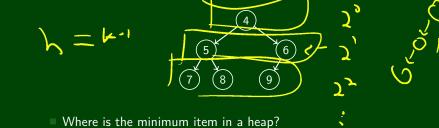
Heap Property:

All Children are larger

Structure Property:

Insist the tree has no "gaps"





■ What is the height of a heap with *n* items?

$$(k-km1)$$

$$(k-km1)$$

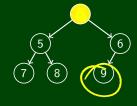
$$(k-km1)$$

$$(k-km1)$$

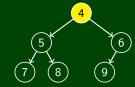
$$(k-km1)$$

It's at the top!

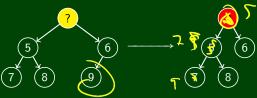
Find the min:



Find the min:



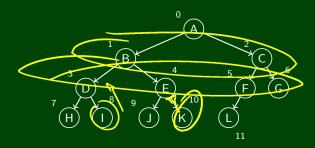
Remove the min and fill the hole with the last child



Let's try insert(1):

Where do we put a new item?

We've insisted that the tree be complete to be a valid Heap. Why?

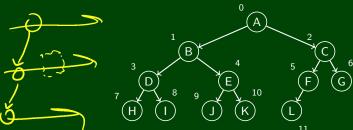


Fill in an array in level-order of the tree:

heap:	А	В	С	D	Е	F	G	Н	J	K	L	0	0	0
										h[10]			h[13]	

If I have the node at index i, how do I get its:

Fill in an array in level-order of the tree:



And...how do we implement Heap?

heap:

	h[0]	h[1]	h[2]	h[3]	h[4]	h[5]	h[6]	h[7]	h[8]	h[9]	h[10]	h[11]	h[12]
lf l	have	the	node	at ir	idex i	i, hov	v do	l get	its:				

Parent? $3 \to 1, 4 \to 1, 10 \to 4, 9 \to 4, 1 \to 0$ This indicates that it's approximately n/2. In fact, it's $\frac{n-1}{2}$.

We've insisted that the tree be complete to be a valid Heap. Why?

Left Child?
$$2(n+1)-1$$

Right Child? 2(n+1)