
Adam Blank Winter 2017Lecture 17

CSE
332

Data Structures and Parallelism



CSE 332: Data Structures and Parallelism

P3



Midterm Exam 1

Let’s spend some time de-briefing.

What Does My Score Mean?

The “curve” was chosen such that your percentage accurately reflects what
percentage of the material thus far you understand relatively deeply.



Midterm Exam (Continued.) 2

What Was Each Question Testing?
(1) Program analysis (understanding of asymptotics, closed forms,

bounds, master theorem, data structure analysis)
(2) Dictionary vs. Set, compareTo of CAFIFOQueue, AVL rotations,

understanding of why AVL trees work/lecture proofs
(3) 311 proofs, reading feedback on exercises, understanding what makes

a proof good or bad, abstract discussion of definitions
(4) Mechanical running of heap algorithms, understanding more

advanced manipulations of heaps
(5) Mechanical insertion into hash tables, what makes a hash function

good?
(6) Understanding of how to approach recurrences, tree method
(7) Ability to implement a new Dictionary-like data structure, evaluation

of various implementations, attempting to access the reverse
mapping in a Dictionary, understanding of BoundedMap vs.
BoundedSet vs. HashTable

(8) Ability to communicate algorithms to others, problem solving in the
abstract, ability to use an old data structure in a new situation



Midterm Exam (Continued Continued.) 3

Let’s spend some time de-briefing.

What To Do Now?

A Bad Option: Throw the exam in the trash/in a drawer and never look
at it again

Some Better Options
Meet with Adam to discuss the course, the exam, life, whatever.
(Just please not tomorrow.)

http://meeting.countablethoughts.com

Figure out what (if anything) went wrong:
insufficient/inactive/inefficient studying?
studied “to the test/practice exam”?
test anxiety?
. . .

Make sure to work with your partner for P3.



Synchronization 4

P3 out tonight!

Make your groups tomorrow!

Decide on several weekly meeting times!



Tic-Tac-Toe 5

O X O

X

X O

No matter what happens at this point, it’s a draw.



Tic-Tac-Toe 5

O X O

X

X O

No matter what happens at this point, it’s a draw.



Tic-Tac-Toe 5

O

X O

X

X O

No matter what happens at this point, it’s a draw.



Tic-Tac-Toe 5

O

X O

X

X

O

No matter what happens at this point, it’s a draw.



Tic-Tac-Toe 5

O

X

O

X

X

O

No matter what happens at this point, it’s a draw.



Tic-Tac-Toe 5

O X O

X

X

O

No matter what happens at this point, it’s a draw.



Tic-Tac-Toe 5

O X O

X

X O

No matter what happens at this point, it’s a draw.



Tic-Tac-Toe 5

O X O

X

X O
No matter what happens at this point, it’s a draw.



Solving Tic-Tac-Toe 6

1 // Let’s assume I’m X
2 win(Board b) {
3 if (O can win on the next move) {
4 block it
5 }
6 else if (the center square is open) {
7 take it
8 }
9 else if (a corner square is open) {

10 take it
11 }
12 else if (...) {
13 ...
14 }
15 }

Do We Really Want To Do This?
Difficult to code
Different for every game
How do we even know we’re right?
Way too much thinking–that’s what computers are for!



Recursion To The Rescue 7

1 boolean win(Board b) {
2 if (b.threeXs()) {
3 return true;
4 }
5 else {
6 for (Move m : every possible move) {
7 if (win(b.do(move))) {
8 return true;
9 }

10 }
11 return false;
12 }

There’s An Issue Here!
When we make a move, it’s not our turn any more.
So the recursive call should be to our opponent’s option
Key Insight: Instead of guessing what the opponent is going to do,
assume she plays optimally!



win:lose::me:you 8

1 // +1 is a win; +0 is a draw; −1 is a loss
2 int eval(Board b) {
3 if (b.gameOver()) {
4 if (b.hasThree(me)) {
5 return 1;
6 }
7 else if (b.hasThree(them)) {
8 return −1;
9 }

10 else {
11 return 0;
12 }
13 }
14 else {
15 int best = −1;
16 for (Move m : every possible move) {
17 best = max(best, −eval(b.apply(move)));
18 }
19 return best;
20 }



A Game of Tic-Tac-Toe 9

X O X

O O

X

X O X

X O O

X

X O X

X O O

O X

X O X

X O O

O X X

X O X

X O O

O X

X O X

O O

X X

X O X

O O O

X X

X O X

O O

X O X

X O X

O O

X X

X O X

O O O

X X

X O X

O O

O X X

X O X

X O O

O X X

X’s Turn

O’s Turn

X’s Turn

O’s Turn

X must choose one of these moves



A Game of Tic-Tac-Toe: Filling in the Game Tree 10

X O X

O O

X

0

-1 -1 -1 -1

0

X’s Turn

O’s Turn

X’s Turn

O’s Turn

X must choose one of these moves



A Game of Tic-Tac-Toe: Filling in the Game Tree 11

X O X

O O

X

-1

0

0

-1

-1

-1 -1

-1

-1 0

0

X’s Turn

O’s Turn

X’s Turn

O’s Turn

X must choose one of these moves



An Idea! 12

50

50 60

Y

3 X

Max’s Turn

Min’s Turn

Max’s Turn

To fill in Y , MIN will take min(3,X). So, there are two cases:
4 = X > 3. Then, Y =min(3,4) = 3. So, the box is 50.
2 = X < 3. Then, Y =min(3,2) = 2. So, the box is 50.

The values of X and Y don’t matter! Don’t calculate them!



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min

Do we check the next node?
We currently have no information. So, yes!



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min

Do we check the next node?
We currently have no information. So, yes!



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min

Do we check the next node?
The current bounds are [−∞,40]. So, we might do better!



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min

Do we check the next node?
Max will choose x ≥ 50 which is already worse than the 40.

The current bounds are [50,40]. Don’t bother.



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min

Do we check the next node?
Min will choose x ≤ 4 which is already worse than the 40.

The current bounds are [40,4]. Don’t bother.



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min



Pruning 13

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min

The algorithm we just ran is called AlphaBeta.
α is the lower bound; β is the upper bound



Parallel Searching 14

P3 combines graph algorithms (more on this later) with parallelism.

You will implement four algorithms:

Minimax (the first one we discussed)

Parallel Minimax

Alpha-Beta Pruning (the second one we discussed)

Jamboree (a parallel alpha-beta)

Each of these four algorithms has their own wrinkles. Each builds on the
last.



Game Trees & Ply 15

A branching factor is how many times a node splits at each level. In
chess, for a random position, the average branching factor is:

35

The average chess game lasts about

40 Moves

If we wanted to evaluate the whole game, we would be evaluating 3540

leaves. If we were able to evaluate 1 trillion leaves a second, we would
need 1048 seconds.



End Game 16

In addition to writing these bots, you’ll get to watch them play.

A demo is worth 1000 words.


