

CSE 332: Data Structures and Parallelism

P vs. NP: The Million \$ Problem

The Class P **Complexity Classes** Definition (The Class P) Definition (Complexity Class) ${\sf P}$ is the set of $decision\ problems\ with\ a\ polynomial\ time\ (in\ terms\ of$ A complexity class is a set of problems limited by some resource the input) algorithm. contraint (time, space, etc.) We've spent pretty much this entire course talking about problems in P. For example: CONN Input(s): $\mathsf{Graph}\ G$ Output: true iff G is connected Today, we will talk about three: P, NP, and EXP **CONN** ∈ P dfs solves **CONN** and takes $\mathcal{O}(|V| + |E|)$, which is the size of the input string (e.g., the graph). **2-COLOR** ∈ P We showed this earlier!

And Others?

How About These? Are They in P?

- 3-COLOR?
- CIRCUITSAT?
- LONG-PATH?
- **FACTOR**?

We have no idea!

There are a lot of open questions about P...

The Class EXP

But Is There Something NOT in P? YES: The Halting Problem! YES: Who wins a game of $n \times n$ chess?

As one might expect, there is another complexity class EXP:

Definition (The Class EXP)

 EXP is the set of decision problems with an exponential time (in terms of the input) algorithm.

4

Generalized **CHESS** \in EXP.

Notice that $P \subseteq EXP$. That is, all problems with polynomial time worst-case solutions also have exponential time worst-case solutions.

Okay, now NP...

But a digression first...

Remember Finite State Machines?

- You studied two types:
 - DFAs (go through a single path to an end state)
 - NFAs (go through all possible paths simultaneously)

NFAs "try everything" and if any of them work, they return true. This idea is called Non-determinism. It's what the "N" in NP stands for.

Definition #1 of NP:

Definition (The Class NP)

NP is the set of **decision problems** with a **non-deterministic** polynomial time (in terms of the input) algorithm.

Unfortunately, this isn't particularly helpful to us. So, we'll turn to an equivalent (but more usable) definition.

Certifiers and NP

5

Definition (Certifier)

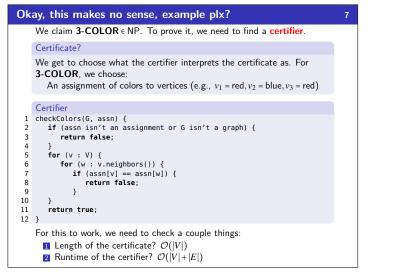
- A certifier for problem \mathbf{X} is an algorithm that takes as input:
- A String s, which is an instance of X (e.g., a graph, a number, a graph and a number, etc.)
- A String w, which acts as a "certificate" or "witness" that $s \in \mathbf{X}$ And returns:
- false (regardless of w) if $s \notin X$
- true for at least one String w if $s \in \mathbf{X}$

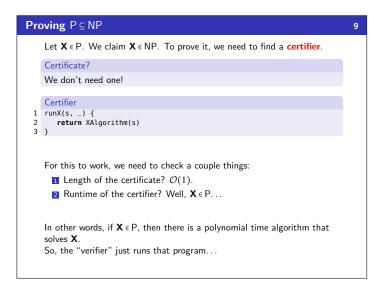
Definition #2 of NP:

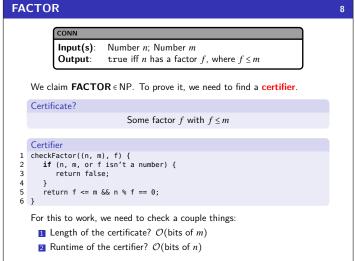
Definition (The Class NP)

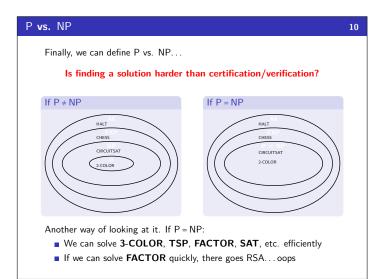
NP is the set of decision problems with a polynomial time certifier.

A consequence of the fact that the certifier must run in polynomial time is that the valid "witness" must have **polynomial length** or the certifier wouldn't be able to read it.









How Could We Even Prove P = NP?

Cook-Levin Theorem

Three Equivalent Statements:

- **CIRCUITSAT** is "harder" than any other problem in NP.
- CIRCUITSAT "captures" all other languages in NP.
- CIRCUITSAT is NP-Hard.

But we already proved that 3-COLOR is "harder" than CIRCUITSAT! So, 3-COLOR is also NP-Hard.

11

Definition (NP-Complete)

A decision problem is $\ensuremath{\text{NP-Complete}}$ if it is a member of $\ensuremath{\text{NP}}$ and it is $\ensuremath{\text{NP-Hard}}.$

Is there an NP-Hard problem, X, where X is not NP-Complete?

Yes. The halting problem!

And? 12 Some NP-Complete Problems CIRCUITSAT, TSP, 3-COLOR, LONG-PATH, HAM-PATH, SCHEDULING, SUBSET-SUM, ... Interestingly, there are a bunch of problem we don't know the answer for: Some Problems Not Known To Be NP-Complete FACTOR, GRAPH-ISOMORPHISM, ... FACTOR, GRAPH-ISOMORPHISM, ...