
Adam Blank Winter 2016Lecture 26

CSE332
Data Abstractions



CSE 332: Data Abstractions

P vs. NP:
The Million $ Problem



Complexity Classes 1

Definition (Complexity Class)
A complexity class is a set of problems limited by some resource
contraint (time, space, etc.)

Today, we will talk about three: P, NP, and EXP



The Class P 2

Definition (The Class P)
P is the set of decision problems with a polynomial time (in terms of
the input) algorithm.

We’ve spent pretty much this entire course talking about problems in P.

For example:

CONN

Input(s): Graph G
Output: true i� G is connected

CONN ∈ P
dfs solves CONN and takes O(�V �+ �E �), which is the size of the input
string (e.g., the graph).

2-COLOR ∈ P
We showed this earlier!



And Others? 3

How About These? Are They in P?
3-COLOR?
CIRCUITSAT?
LONG-PATH?
FACTOR?

We have no idea!

There are a lot of open questions about P. . .



And Others? 3

How About These? Are They in P?
3-COLOR?
CIRCUITSAT?
LONG-PATH?
FACTOR?

We have no idea!

There are a lot of open questions about P. . .



The Class EXP 4

But Is There Something NOT in P?
YES: The Halting Problem!
YES: Who wins a game of n×n chess?

As one might expect, there is another complexity class EXP:

Definition (The Class EXP)
EXP is the set of decision problems with an exponential time (in terms
of the input) algorithm.

Generalized CHESS ∈ EXP.

Notice that P ⊆ EXP. That is, all problems with polynomial time
worst-case solutions also have exponential time worst-case solutions.



Okay, now NP. . . 5

But a digression first. . .

Remember Finite State Machines?
You studied two types:

DFAs (go through a single path to an end state)
NFAs (go through all possible paths simultaneously)

NFAs “try everything” and if any of them work, they return true. This
idea is called Non-determinism. It’s what the “N” in NP stands for.

Definition #1 of NP:

Definition (The Class NP)
NP is the set of decision problems with a non-deterministic
polynomial time (in terms of the input) algorithm.

Unfortunately, this isn’t particularly helpful to us. So, we’ll turn to an
equivalent (but more usable) definition.



Okay, now NP. . . 5

But a digression first. . .

Remember Finite State Machines?
You studied two types:

DFAs (go through a single path to an end state)
NFAs (go through all possible paths simultaneously)

NFAs “try everything” and if any of them work, they return true. This
idea is called Non-determinism. It’s what the “N” in NP stands for.

Definition #1 of NP:

Definition (The Class NP)
NP is the set of decision problems with a non-deterministic
polynomial time (in terms of the input) algorithm.

Unfortunately, this isn’t particularly helpful to us. So, we’ll turn to an
equivalent (but more usable) definition.



Certifiers and NP 6

Definition (Certifier)
A certifier for problem X is an algorithm that takes as input:

A String s, which is an instance of X (e.g., a graph, a number, a
graph and a number, etc.)

A String w, which acts as a “certificate” or “witness” that s ∈X
And returns:

false (regardless of w) if s �∈X
true for at least one String w if s ∈X

Definition #2 of NP:

Definition (The Class NP)
NP is the set of decision problems with a polynomial time certifier.

A consequence of the fact that the certifier must run in polynomial time
is that the valid “witness” must have polynomial length or the certifier
wouldn’t be able to read it.



Certifiers and NP 6

Definition (Certifier)
A certifier for problem X is an algorithm that takes as input:

A String s, which is an instance of X (e.g., a graph, a number, a
graph and a number, etc.)
A String w, which acts as a “certificate” or “witness” that s ∈X

And returns:
false (regardless of w) if s �∈X
true for at least one String w if s ∈X

Definition #2 of NP:

Definition (The Class NP)
NP is the set of decision problems with a polynomial time certifier.

A consequence of the fact that the certifier must run in polynomial time
is that the valid “witness” must have polynomial length or the certifier
wouldn’t be able to read it.



Okay, this makes no sense, example plx? 7

We claim 3-COLOR ∈NP. To prove it, we need to find a certifier.

Certificate?
We get to choose what the certifier interprets the certificate as. For
3-COLOR, we choose:

An assignment of colors to vertices (e.g., v1 = red,v2 = blue,v3 = red)

Certifier
1 checkColors(G, assn) {
2 if (assn isn’t an assignment or G isn’t a graph) {
3 return false;
4 }
5 for (v : V) {
6 for (w : v.neighbors()) {
7 if (assn[v] == assn[w]) {
8 return false;
9 }

10 }
11 return true;
12 }

For this to work, we need to check a couple things:
1 Length of the certificate? O(�V �)
2 Runtime of the certifier? O(�V �+ �E �)



Okay, this makes no sense, example plx? 7

We claim 3-COLOR ∈NP. To prove it, we need to find a certifier.

Certificate?
We get to choose what the certifier interprets the certificate as. For
3-COLOR, we choose:

An assignment of colors to vertices (e.g., v1 = red,v2 = blue,v3 = red)

Certifier
1 checkColors(G, assn) {
2 if (assn isn’t an assignment or G isn’t a graph) {
3 return false;
4 }
5 for (v : V) {
6 for (w : v.neighbors()) {
7 if (assn[v] == assn[w]) {
8 return false;
9 }

10 }
11 return true;
12 }

For this to work, we need to check a couple things:
1 Length of the certificate? O(�V �)
2 Runtime of the certifier? O(�V �+ �E �)



FACTOR 8

CONN

Input(s): Number n; Number m
Output: true i� n has a factor f , where f ≤m

We claim FACTOR ∈NP. To prove it, we need to find a certifier.

Certificate?
Some factor f with f ≤m

Certifier
1 checkFactor((n, m), f) {
2 if (n, m, or f isn’t a number) {
3 return false;
4 }
5 return f <= m && n % f == 0;
6 }

For this to work, we need to check a couple things:
1 Length of the certificate? O(bits of m)
2 Runtime of the certifier? O(bits of n)



Proving P ⊆NP 9

Let X ∈ P. We claim X ∈NP. To prove it, we need to find a certifier.

Certificate?
We don’t need one!

Certifier
1 runX(s, _) {
2 return XAlgorithm(s)
3 }

For this to work, we need to check a couple things:
1 Length of the certificate? O(1).
2 Runtime of the certifier? Well, X ∈ P. . .

In other words, if X ∈ P, then there is a polynomial time algorithm that
solves X.
So, the “verifier” just runs that program. . .



P vs. NP 10

Finally, we can define P vs. NP. . .

Is finding a solution harder than certification/verification?

If P ≠NP
All

HALT

EXP
CHESS

NP
CIRCUITSAT

P
2-COLOR

If P =NP
All

HALT

EXP
CHESS

P = NP
CIRCUITSAT

2-COLOR

Another way of looking at it. If P =NP:
We can solve 3-COLOR, TSP, FACTOR, SAT, etc. e�ciently
If we can solve FACTOR quickly, there goes RSA. . . oops



How Could We Even Prove P =NP? 11

Cook-Levin Theorem
Three Equivalent Statements:

CIRCUITSAT is “harder” than any other problem in NP.
CIRCUITSAT “captures” all other languages in NP.
CIRCUITSAT is NP-Hard.

But we already proved that 3-COLOR is “harder” than CIRCUITSAT!
So, 3-COLOR is also NP-Hard.

Definition (NP-Complete)
A decision problem is NP-Complete if it is a member of NP and it is
NP-Hard.

Is there an NP-Hard problem, X, where X is not NP-Complete?

Yes. The halting problem!



How Could We Even Prove P =NP? 11

Cook-Levin Theorem
Three Equivalent Statements:

CIRCUITSAT is “harder” than any other problem in NP.
CIRCUITSAT “captures” all other languages in NP.
CIRCUITSAT is NP-Hard.

But we already proved that 3-COLOR is “harder” than CIRCUITSAT!
So, 3-COLOR is also NP-Hard.

Definition (NP-Complete)
A decision problem is NP-Complete if it is a member of NP and it is
NP-Hard.

Is there an NP-Hard problem, X, where X is not NP-Complete?

Yes. The halting problem!



And? 12

Some NP-Complete Problems
CIRCUITSAT, TSP, 3-COLOR, LONG-PATH, HAM-PATH,
SCHEDULING, SUBSET-SUM, . . .

Interestingly, there are a bunch of problem we don’t know the answer for:

Some Problems Not Known To Be NP-Complete
FACTOR, GRAPH-ISOMORPHISM, . . .


