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Complexity Classes 1

Definition (Complexity Class)
A complexity class is a set of problems limited by some resource
contraint (time, space, etc.)

Today, we will talk about three: P, NP, and EXP



The Class P 2

Definition (The Class P)
P is the set of decision problems with a polynomial time (in terms of
the input) algorithm.

We’ve spent pretty much this entire course talking about problems in P.

For example:

CONN

Input(s): Graph G
Output: true i� G is connected

CONN ∈ P
dfs solves CONN and takes O(�V �+ �E �), which is the size of the input
string (e.g., the graph).

2-COLOR ∈ P
We showed this earlier!



And Others? 3

How About These? Are They in P?
3-COLOR?
CIRCUITSAT?
LONG-PATH?
FACTOR?

We have no idea!

There are a lot of open questions about P. . .
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The Class EXP 4

But Is There Something NOT in P?
YES: The Halting Problem!
YES: Who wins a game of n×n chess?

As one might expect, there is another complexity class EXP:

Definition (The Class EXP)
EXP is the set of decision problems with an exponential time (in terms
of the input) algorithm.

Generalized CHESS ∈ EXP.

Notice that P ⊆ EXP. That is, all problems with polynomial time
worst-case solutions also have exponential time worst-case solutions.



Okay, now NP. . . 5

But a digression first. . .

Remember Finite State Machines?
You studied two types:

DFAs (go through a single path to an end state)
NFAs (go through all possible paths simultaneously)

NFAs “try everything” and if any of them work, they return true. This
idea is called Non-determinism. It’s what the “N” in NP stands for.

Definition #1 of NP:

Definition (The Class NP)
NP is the set of decision problems with a non-deterministic
polynomial time (in terms of the input) algorithm.

Unfortunately, this isn’t particularly helpful to us. So, we’ll turn to an
equivalent (but more usable) definition.
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Certifiers and NP 6

Definition (Certifier)
A certifier for problem X is an algorithm that takes as input:

A String s, which is an instance of X (e.g., a graph, a number, a
graph and a number, etc.)

A String w, which acts as a “certificate” or “witness” that s ∈X
And returns:

false (regardless of w) if s �∈X
true for at least one String w if s ∈X

Definition #2 of NP:

Definition (The Class NP)
NP is the set of decision problems with a polynomial time certifier.

A consequence of the fact that the certifier must run in polynomial time
is that the valid “witness” must have polynomial length or the certifier
wouldn’t be able to read it.
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Okay, this makes no sense, example plx? 7

We claim 3-COLOR ∈NP. To prove it, we need to find a certifier.

Certificate?
We get to choose what the certifier interprets the certificate as. For
3-COLOR, we choose:

An assignment of colors to vertices (e.g., v1 = red,v2 = blue,v3 = red)

Certifier
1 checkColors(G, assn) {
2 if (assn isn’t an assignment or G isn’t a graph) {
3 return false;
4 }
5 for (v : V) {
6 for (w : v.neighbors()) {
7 if (assn[v] == assn[w]) {
8 return false;
9 }

10 }
11 return true;
12 }

For this to work, we need to check a couple things:
1 Length of the certificate? O(�V �)
2 Runtime of the certifier? O(�V �+ �E �)
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FACTOR 8

CONN

Input(s): Number n; Number m
Output: true i� n has a factor f , where f ≤m

We claim FACTOR ∈NP. To prove it, we need to find a certifier.

Certificate?
Some factor f with f ≤m

Certifier
1 checkFactor((n, m), f) {
2 if (n, m, or f isn’t a number) {
3 return false;
4 }
5 return f <= m && n % f == 0;
6 }

For this to work, we need to check a couple things:
1 Length of the certificate? O(bits of m)
2 Runtime of the certifier? O(bits of n)



Proving P ⊆NP 9

Let X ∈ P. We claim X ∈NP. To prove it, we need to find a certifier.

Certificate?
We don’t need one!

Certifier
1 runX(s, _) {
2 return XAlgorithm(s)
3 }

For this to work, we need to check a couple things:
1 Length of the certificate? O(1).
2 Runtime of the certifier? Well, X ∈ P. . .

In other words, if X ∈ P, then there is a polynomial time algorithm that
solves X.
So, the “verifier” just runs that program. . .



P vs. NP 10

Finally, we can define P vs. NP. . .

Is finding a solution harder than certification/verification?

If P ≠NP
All

HALT

EXP
CHESS

NP
CIRCUITSAT

P
2-COLOR

If P =NP
All

HALT

EXP
CHESS

P = NP
CIRCUITSAT

2-COLOR

Another way of looking at it. If P =NP:
We can solve 3-COLOR, TSP, FACTOR, SAT, etc. e�ciently
If we can solve FACTOR quickly, there goes RSA. . . oops



How Could We Even Prove P =NP? 11

Cook-Levin Theorem
Three Equivalent Statements:

CIRCUITSAT is “harder” than any other problem in NP.
CIRCUITSAT “captures” all other languages in NP.
CIRCUITSAT is NP-Hard.

But we already proved that 3-COLOR is “harder” than CIRCUITSAT!
So, 3-COLOR is also NP-Hard.

Definition (NP-Complete)
A decision problem is NP-Complete if it is a member of NP and it is
NP-Hard.

Is there an NP-Hard problem, X, where X is not NP-Complete?

Yes. The halting problem!
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And? 12

Some NP-Complete Problems
CIRCUITSAT, TSP, 3-COLOR, LONG-PATH, HAM-PATH,
SCHEDULING, SUBSET-SUM, . . .

Interestingly, there are a bunch of problem we don’t know the answer for:

Some Problems Not Known To Be NP-Complete
FACTOR, GRAPH-ISOMORPHISM, . . .


