

Data Abstractions

CSE 332: Data Abstractions

P vs. NP:
The Million \$ Problem
I'll be hading extro office
hars in phe lans from
1:30pm - 3:30pm today!

Definition (Complexity Class)
A complexity class is a set of problems limited by some resource constraint (time, space, etc.)
\{ODD, EVEN, MULi-Dif3, .. $\}$ set of stains

Today, we will talk about three: P, NP, and EXP

The Class P

Definition (The Class P)

P is the set of decision problems with a polynomial time (in terms of the input) algorithm.

We've spent pretty much this entire course talking about problems in P. For example:

CONN
 Inputs): Graph G
 Output: true iff G is connected

CONN $\in P$

dfs solves CONN and takes $\mathcal{O}(|V|+|E|)$, which is the size of the input string (e.g., the graph).

$$
G=(\{a, b,\langle \},\{\{a, b\},\{a, c\}\})
$$

The Class P

Definition (The Class P)

P is the set of decision problems with a polynomial time (in terms of the input) algorithm.

We've spent pretty much this entire course talking about problems in P. For example:

```
CONN
Input(s): Graph G
Output: true iff G is connected
```


CONN $\in P$

dfs solves CONN and takes $\mathcal{O}(|V|+|E|)$, which is the size of the input string (e.g., the graph).

2-COLOR \in P

We showed this earlier!

And Others?

How About These? Are They in P?

- 3-COLOR?
- CIRCUITSAT?
- LONG-PATH?
- FACTOR?
$\left\lvert\, \begin{array}{ll}\text { wish Sol to } 3 \text {-color, } \\ \text { we can solve SAT }\end{array}\right.$

And Others?

How About These? Are They in P?

- 3-COLOR?
- CIRCUITSAT?
- LONG-PATH?
- FACTOR?

We have no idea!

There are a lot of open questions about P...

But Is There Something NOT in P?
YES: The Halting Problem!
YES: Who wins a game of $n \times n$ chess?

As one might expect, there is another complexity class EXP:
Definition (The Class EXP)
EXP is the set of decision problems with an exponential time (in terms of the input) algorithm.

Generalized CHESS \in EXP.

$$
\begin{aligned}
& \text { P } \\
& \text { "easy" } \\
& \text { C ExP } \\
& \text { Wrenily hard." } \\
& \text { "eff, cine" } \\
& \text { but pass." }
\end{aligned}
$$

The Class EXP

But Is There Something NOT in P?

YES: The Halting Problem!
YES: Who wins a game of $n \times n$ chess?

As one might expect, there is another complexity class EXP:
Definition (The Class EXP)
EXP is the set of decision problems with an exponential time (in terms of the input) algorithm.

Generalized CHESS \in EXP.

Notice that $\mathrm{P} \subseteq E X P$. That is, all problems with polynomial time worst-case solutions also have exponential time worst-case solutions.

But a digression first. . .
Remember Finite State Machines?
You studied two types:

But a digression first. . .

Remember Finite State Machines?

You studied two types:

- DFAs (go through a single path to an end state)
- NFAs (go through all possible paths simultaneously)

NFAs "try everything" and if any of them work, they return true. This idea is called Non-determinism. It's what the " N " in NP stands for.

Definition \#1 of NP:
Definition (The Class NP)
NP is the set of decision problems with a non-deterministic polynomial time (in terms of the input) algorithm.

$$
D F A=N F A
$$

But a digression first. . .

Remember Finite State Machines?

```
You studied two types:
- DFAs (go through a single path to an end state)
- NFAs (go through all possible paths simultaneously)
```

NFAs "try everything" and if any of them work, they return true. This idea is called Non-determinism. It's what the "N" in NP stands for.

Definition \#1 of NP:
Definition (The Class NP)
NP is the set of decision problems with a non-deterministic polynomial time (in terms of the input) algorithm.

Unfortunately, this isn't particularly helpful to us. So, we'll turn to an equivalent (but more usable) definition.

Definition (Certifier)
A certifier for problem \mathbf{X} is an algorithm that takes as input:

- A String s, which is an instance of \mathbf{X} (e.g., a graph, a number, a graph and a number, etc.)

Definition (Certifier)

A certifier for problem \mathbf{X} is an algorithm that takes as input:

- A String s, which is an instance of \mathbf{X} (e.g., a graph, a number, a graph and a number, etc.)
- A String w, which acts as a "certificate" or "witness" that $s \in \mathbf{X}$ And returns:

Definition (Certifier)

A certifier for problem \mathbf{X} is an algorithm that takes as input:

- A String s, which is an instance of \mathbf{X} (e.g., a graph, a number, a graph and a number, etc.)
- A String w, which acts as a "certificate" or "witness" that $s \in \mathbf{X}$

And returns:

- false (regardless of w) if $s \notin \mathbf{X}$
- true for at least one String w if $s \in \mathbf{X}$

Definition \#2 of NP:
Definition (The Class NP)
NP is the set of decision problems with a polynomial time certifier.

A consequence of the fact that the certifier must run in polynomial time is that the valid "witness" must have polynomial length or the certifier wouldn't be able to read it.

Okay, this makes no sense, example ply?
We claim $3-C O L O R \in N P$. To prove it, we need to find a certifier.
verify $(G$, assn $)\}$
$\}$
(a)

$\{a: R, b: G, C: R\}$

Okay, this makes no sense, example plx?

We claim 3-COLOR \in NP. To prove it, we need to find a certifier.
Certificate?
We get to choose what the certifier interprets the certificate as. For 3-COLOR, we choose:

An assignment of colors to vertices (e.g., $v_{1}=$ red, $v_{2}=$ blue, $v_{3}=$ red $)$
Certifier

```
checkColors(G, assn) {
    if (assn isn't an assignment or G isn't a graph) {
        return false;
    }
    for (v : V) {
        for (w : v.neighbors()) {
            if (assn[v] == assn[w]) {
                return false;
            }
    }
    return true;
}
```

For this to work, we need to check a couple things:
1 Length of the certificate? $\mathcal{O}(|V|)$
2 Runtime of the certifier? $\mathcal{O}(|V|+|E|)$

FACTOR

```
Crnis F ADClor
Input(s): Number n; Number m
Output: true iff }n\mathrm{ has a factor }f\mathrm{ , where }f\leq
```

We claim FACTOR $\in N P$. To prove it, we need to find a certifier.

FACTOR

CONN

Input(s): Number n; Number m
Output: true iff n has a factor f, where $f \leq m$

We claim $\operatorname{FACTOR} \in N P$. To prove it, we need to find a certifier.
Certificate?

Some factor f with $f \leq m$

Certifier

```
1 checkFactor((n, m), f) {
2 if (n, m, or f isn't a number) {
return false;
4 }
    return f <= m && n % f == 0;
}
```

For this to work, we need to check a couple things:
1 Length of the certificate? \mathcal{O} (bits of m)
2 Runtime of the certifier? \mathcal{O} (bits of n)

Let $\mathbf{X} \in \mathrm{P}$. We claim $\mathbf{X} \in \mathrm{NP}$. To prove it, we need to find a certifier.
Certificate?
We don't need one!
Certifier
1 runX(s, -) \{
2 return XAlgorithm(s)
3
\}

For this to work, we need to check a couple things:

$$
A l g_{p} \rightarrow \text { verip }
$$

1 Length of the certificate? $\mathcal{O}(1)$.
2 Runtime of the certifier? Well, $\mathbf{X} \in \mathrm{P} \ldots$

In other words, if $\mathbf{X} \in P$, then there is a polynomial time algorithm that solves X .
So, the "verifier" just runs that program. . .

Finally, we can define P vs. NP...
Is finding a solution harder than certification/verification?

$$
\text { If } P \neq N P
$$

If $\mathrm{P}=\mathrm{NP}$

Another way of looking at it. If $\mathrm{P}=\mathrm{NP}$:

- We can solve 3-COLOR, TSP, FACTOR, SAT, etc. efficiently
- If we can solve FACTOR quickly, there goes RSA. . . oops

Cook-Levin Theorem

Three Equivalent Statements:

- CIRCUITSAT is "harder" than any other problem in NP.
- CIRCUITSAT "captures" all other languages in NP.
- CIRCUITSAT is NP-Hard.

But we already proved that 3-COLOR is "harder" than CIRCUITSAT!

) 3 cal cos

to $S_{A T}$

Cook-Levin Theorem

Three Equivalent Statements:

- CIRCUITSAT is "harder" than any other problem in NP.
- CIRCUITSAT "captures" all other languages in NP.
- CIRCUITSAT is NP-Hard.

But we already proved that 3-COLOR is "harder" than CIRCUITSAT! So, 3-COLOR is also NP-Hard.

Definition (NP-Complete)
A decision problem is NP-Complete if it is a member of NP and it is NP-Hard.

Is there an NP-Hard problem, \mathbf{X}, where \mathbf{X} is not NP-Complete?
Yes. The halting problem!

Some NP-Complete Problems

CIRCUITSAT, TSP, 3-COLOR, LONG-PATH, HAM-PATH, SCHEDULING, SUBSET-SUM,

Interestingly, there are a bunch of problem we don't know the answer for:
Some Problems Not Known To Be NP-Complete
FACTOR, GRAPH-ISOMORPHISM, ...

