

Review: Collisions

Definition (Collision)

A ${\mbox{collision}}$ is when two distinct keys map to the same location in the hash table.

A good hash function attempts to avoid as many collisions as possible, but they are inevitable.

How do we deal with collisions?

There are multiple strategies:

- Separate Chaining
- Open Addressing
 - Linear Probing
 - Quadratic Probing
 - Double Hashing

3

Quadratic Probing: Table Coverage					
	48 5 55 40 76 τ(0) τ(1) τ(2) τ(3) τ(4) τ(5) τ(6)				
	Why Does insert(47) Fail?				
	For all $i,~(5+i^2)~{\rm mod}~7\in\{0,2,5,6\}.$ The proof is by induction. This actually generalizes:				
	For all c,k , $(c+i^2) \mod k = (c+(i-k)^2) \mod k$				
	So, quadratic probing doesn't always fill the table.				
	The Good News!				
	If $ T $ is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in				
at most $\frac{ T }{2}$ probes. So, if we keep $\lambda < \frac{1}{2}$, we don't need to detect cycl					
	The proof will be posted on the website.				
	So, does quadratic probing completely fix clustering ?				

14

le Hashing Analysis		13	Where We Are
illing the Table			
lust like with Quadratic Probing, we should have have a single will not get an information of the set of the	•		<pre>Separate Chaining is Easy! find, delete proportional to load far insert can be constant if just push of </pre>
Uniform Hashing			Open Addressing is Tricky!
or double hashing, we assume unifor Pr[g(key1) mod <i>p</i> = g	C C		 Clustering issues Doesn't always use the whole table Why Use it? Less memory allocation
Average Number of Probes			 Easier data representation
Unsuccessful Search	Successful Search		
$\frac{1}{1-\lambda}$	$rac{1}{\lambda}\ln\left(rac{1}{1-\lambda} ight)$		Now, let's move on to resizing the table.
This is way better th	an linear probing.		

15

Hashing and Comparing	16
 A hash function isn't enough! We have to compare items: With separate chaining, we have to loop through the list checking if the item is what we're looking for With open addressing, we need to know when to stop probing 	
 We have two options for this: equality testing or comparison testing. In Project 2, you will use both types. In Java, each Object has an equals method and a hashCode method 	
<pre>1 class Object { 2 boolean equals(Object o) {} 3 int hashCode() {} 4 5 }</pre>	

Rehashing

When λ is too big, create a bigger table and copy over the items

When To Resize

- With separate chaining, we decide when to resize (should be $\lambda \leq 1$)
- With open addressing, we need to keep $\lambda < \frac{1}{2}$

New Table Size?

- Like always, we want around "twice as big"
- ... but it should still be prime
- So, choose the next prime about twice as big

How To Resize

- Go through table, do standard insert for each into new table:
- Iterate over old table: $\mathcal{O}(n)$
- *n* inserts / calls to the hash function: $n \times \mathcal{O}(1) = \mathcal{O}(n)$
- But this is amortized $\mathcal{O}(1)$

Properties of Comparable and Hashable

For any class, it **must be the case that**:

- If a.equals(b), then a.hashCode() == b.hashCode()
- If a.compareTo(b) == 0, then a.hashCode() == b.hashCode()
- If a.compareTo(b) < 0, then b.compareTo(a) > 0
- If a.compareTo(b) == 0, then b.compareTo(a) == 0
- If a.compareTo(b) < 0 and b.compareTo(c) < 0, then a.compareTo(c) < 0</pre>

A Good Hashcode 18 1 int result = 17; // start at a prime 2 foreach field f 3 int fieldHashcode = 4 boolean: (f ? 1: 0) 5 byte, char, short, int: (int) f 6 long: (int) (f ^ (f >> 32)) 7 float: Float.floatToIntBits(f) 8 double: Double.doubleToLongBits(f), then above 9 Object: object.hashCode() 10 result = 31 * result + fieldHashcode; 11 return result;

Hashing Wrap-Up

19

17

- Hash Tables are one of the most important data structures
 - Efficient find, insert, and delete
 - based on sorted order are not so efficientUseful in many, many real-world applications
 - Popular topic for job interview questions

Important to use a good hash function

- Good distribution, uses enough of keys values
- Not overly expensive to calculate (bit shifts good!)
- Important to keep hash table at a good size
 - Prime Size
 - \blacksquare λ depends on type of table
- What we skipped: perfect hashing, universal hash functions, hopscotch hashing, cuckoo hashing