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CSE 332: Data Structures and Parallelism

Hashing: Part 2

HashTable Review 1

Hash Tables
Provides O(1) core Dictionary operations (on average)
We call the key space the “universe”: U and the Hash Table T

We should use this data structure only when we expect ∣U ∣ >> ∣T ∣
(Or, the key space is non-integer values.)

E
hash functionÐÐÐÐÐÐÐ→ int´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Hash Table Client

mod ∣T ∣ÐÐÐÐ→Table Index collision?ÐÐÐÐÐ→ Fixed Table Index´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Hash Table Library

Another Consideration?

What do we do when λ (the load factor) gets too large?

Hashing Choices 2

1 Choose a hash function

2 Choose a table size

3 Choose a collision resolution strategy
Separate Chaining
Linear Probing
Quadratic Probing
Double Hashing
Other issues to consider:

4 Choose an implementation of deletion

5 Choose a λ that means the table is “too full”

We discussed the first few of these last time. We’ll discuss the rest today.

Review: Collisions 3

Definition (Collision)
A collision is when two distinct keys map to the same location in the
hash table.
A good hash function attempts to avoid as many collisions as possible,
but they are inevitable.

How do we deal with collisions?

There are multiple strategies:
Separate Chaining
Open Addressing

Linear Probing
Quadratic Probing
Double Hashing

Open Addressing 4

Definition (Open Addressing)
Open Addressing is a type of collision resolution strategy that resolves
collisions by choosing a different location when the natural choice is full.

There are many types of open addressing. Here’s the key ideas:
We must be able to duplicate the path we took.
We want to use all the spaces in the table.
We want to avoid putting lots of keys close together.

It turns out some of these are difficult to achieve. . .

Strategy #1: Linear Probing
1 i = 0;
2 while (index in use) {
3 try (h(key) + i) % ∣T ∣
4 }

Example
Insert 38,19,8,109,10 into a
hash table with hash function
h(x) = x and linear probing

8 109 10 38 19
T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]

(Items with the same hash code are the same color)



Open Addressing: Linear Probing 5

Strategy #1: Linear Probing
1 i = 0;
2 while (index in use) {
3 try (h(key) + i) % ∣T ∣
4 }

Example
Insert 38,19,8,109,10 into a
hash table with hash function
h(x) = x and linear probing

8 109 10 38 19
T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]

(Items with the same hash code are the same color)

Other Operations with Linear Probing
insert? Finds the next open spot. The worst case is O(n)
find? We have to retrace our steps. If the insert chain was k long,
then find ∈O(k).
delete? We don’t have a choice; we must use lazy deletion. What
happens if we delete 19 and then do find(109) in our example?

8 109 10 38 19
T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]
8 109 10 38 X

T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]

Analyzing Linear Probing 6

Which Criteria Does Linear Probing Meet?
We want to use all the spaces in the table.
Yes! Linear probing will fill the whole table.
We want to avoid putting lots of keys close together.
Uh. . . not so much

Primary Clustering
Primary Clustering is when different keys collide to form one big group.

8 109 10 101 20 38 19
T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]

Think of this as “clusters of many colors”. Even though these keys are all
different, they end up in a giant cluster.

In linear probing, we expect to get O(lgn) size clusters.

This is really bad! But, how bad, really?

Analyzing Linear Probing 7

Load Factor & Space Usage
Note that λ ≤ 1, and we will eventually get to λ = 1.

Average Number of Probes
Unsuccessful Search

1
2
(1+ 1(1−λ)2 )
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1
2
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///////Linear Quadratic Probing 8

There’s nothing theoretically wrong with open addressing that forces
primary clustering. We’d like a different (easy to compute) function to
probe with. That is:
Open Addressing In General
Choose a new function f (x) and then probe with

(h(key)+ f (i)) mod ∣T ∣
Strategy #2: Quadratic Probing

1 i = 0;
2 while (index in use) {

3 try (h(key) + i2) % ∣T ∣
4 }

Example
Insert 89,18,49,58,79 into a
hash table with hash function
h(x) = x and quadratic probing

49 58 79 18 89
T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]

h(58) i=0Ð→ 58+02 ≡ 8

i=1Ð→ 58+12 ≡ 9

i=2Ð→ 58+22 ≡ 2

h(79) i=0Ð→ 79+02 ≡ 9

i=1Ð→ 79+12 ≡ 0

i=2Ð→ 79+22 ≡ 3

Another Quadratic Probing Example 9

Strategy #2: Quadratic Probing
1 i = 0;
2 while (index in use) {

3 try (h(key) + i2) % ∣T ∣
4 }

Example
Insert 76,40,48,5,55,47 into a
hash table with hash function
h(x) = x and quadratic probing

48 5 55 40 76
T[0] T[1] T[2] T[3] T[4] T[5] T[6]

h(76) i=0Ð→ 76+02 ≡7 6h(40) i=0Ð→ 40+02 ≡7 5h(48) i=0Ð→ 48+02 ≡7 6

i=1Ð→ 48+12 ≡7 0

h(5) i=0Ð→ 5+02 ≡7 5

i=1Ð→ 5+12 ≡7 6

i=2Ð→ 5+22 ≡7 2

h(55) i=0Ð→ 55+02 ≡7 6

i=1Ð→ 55+12 ≡7 0

i=2Ð→ 55+22 ≡7 3

h(47) i=0Ð→ 47+02 ≡7 5

i=1Ð→ 47+12 ≡7 6

i=2Ð→ 47+22 ≡7 2

i=3Ð→ 47+32 ≡7 0

i=4Ð→ 47+42 ≡7 0

i=5Ð→ 47+52 ≡7 2

We will never get a 1 or a 4!

This means we will never be able to insert 47. What’s going on?

Quadratic Probing: Table Coverage 10

48 5 55 40 76
T[0] T[1] T[2] T[3] T[4] T[5] T[6]

Why Does insert(47) Fail?
For all i, (5+ i2) mod 7 ∈ {0,2,5,6}. The proof is by induction. This
actually generalizes:

For all c,k, (c+ i2) mod k = (c+(i−k)2) mod k

So, quadratic probing doesn’t always fill the table.

The Good News!

If ∣T ∣ is prime and λ < 1
2

, then quadratic probing will find an empty slot in

at most ∣T ∣
2

probes. So, if we keep λ < 1
2

, we don’t need to detect cycles.
The proof will be posted on the website.

So, does quadratic probing completely fix clustering?



Quadratic Probing: Clustering 11

With linear probing, we saw primary clustering (keys hashing near each
other). Quadratic Probing fixes this by “jumping”. Unfortunately, we still
get secondary clustering:

Secondary Clustering
Secondary Clustering is when different keys hash to the same place and
follow the same probing sequence.

39 29 9 19
T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]

Think of this as long probing chains of the same color. The keys all start
at the same place; so, the chain gets really long.

We can avoid secondary clustering by using a probe function that
depends on the key.

///////Linear ////////////Quadratic Double Hashing 12

Strategy #3: Double Hashing
1 i = 0;
2 while (index in use) {
3 try (h(key) + i∗g(key)) % ∣T ∣
4 }

We insist g(x) ≠ 0.

Example
Insert 13,28,33,147,43 into a
hash table with:

h(x) = x

g(x) = 1+( x∣T ∣ ) mod (∣T ∣−1)
using double hashing

13 33 28 147
T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]

h(33) i=0Ð→ 33+0 ≡ 3

i=1Ð→ 33+1(1+3 mod 9) ≡ 7

h(147) i=0Ð→ 147+0 ≡ 7

i=1Ð→ 147+1(1+14 mod 9) ≡ 3

i=1Ð→ 147+2(1+14 mod 9) ≡ 9

h(43) i=0Ð→ 43+0 ≡ 3

i=1Ð→ 43+1(1+4 mod 9) ≡ 8

i=1Ð→ 43+2(1+4 mod 9) ≡ 3

i=1Ð→ 43+3(1+4 mod 9) ≡ 8

We got stuck again!

Double Hashing Analysis 13

Filling the Table
Just like with Quadratic Probing, we sometimes hit an infinite loop with
double hashing. We will not get an infinite loop in the case with
primes p,q such that 2 < q < p:

h(key) = key mod p

g(key) = q−(key mod q)
Uniform Hashing
For double hashing, we assume uniform hashing which means:

Pr[g(key1) mod p = g(key2) mod p] = 1
p

Average Number of Probes
Unsuccessful Search

1
1−λ

Successful Search
1
λ

ln( 1
1−λ

)
This is way better than linear probing.

Where We Are 14

Separate Chaining is Easy!
find, delete proportional to load factor on average
insert can be constant if just push on front of list

Open Addressing is Tricky!
Clustering issues
Doesn’t always use the whole table
Why Use it?

Less memory allocation
Easier data representation

Now, let’s move on to resizing the table.

Rehashing 15

When λ is too big, create a bigger table and copy over the items

When To Resize
With separate chaining, we decide when to resize (should be λ ≤ 1)

With open addressing, we need to keep λ < 1
2

New Table Size?
Like always, we want around “twice as big”
. . . but it should still be prime
So, choose the next prime about twice as big

How To Resize
Go through table, do standard insert for each into new table:

Iterate over old table: O(n)
n inserts / calls to the hash function: n×O(1) =O(n)
But this is amortized O(1)

Hashing and Comparing 16

A hash function isn’t enough! We have to compare items:
With separate chaining, we have to loop through the list checking if
the item is what we’re looking for
With open addressing, we need to know when to stop probing

We have two options for this: equality testing or comparison testing.
In Project 2, you will use both types.
In Java, each Object has an equals method and a hashCode
method

1 class Object {
2 boolean equals(Object o) {...}
3 int hashCode() {...}
4 ...
5 }



Properties of Comparable and Hashable 17

For any class, it must be the case that:

If a.equals(b), then a.hashCode() == b.hashCode()

If a.compareTo(b) == 0, then a.hashCode() == b.hashCode()

If a.compareTo(b) < 0, then b.compareTo(a) > 0

If a.compareTo(b) == 0, then b.compareTo(a) == 0

If a.compareTo(b) < 0 and b.compareTo(c) < 0, then
a.compareTo(c) < 0

A Good Hashcode 18

1 int result = 17; // start at a prime
2 foreach field f
3 int fieldHashcode =
4 boolean: (f ? 1: 0)
5 byte, char, short, int: (int) f
6 long: (int) (f ^ (f >>> 32))
7 float: Float.floatToIntBits(f)
8 double: Double.doubleToLongBits(f), then above
9 Object: object.hashCode()

10 result = 31 * result + fieldHashcode;
11 return result;

Hashing Wrap-Up 19

Hash Tables are one of the most important data structures
Efficient find, insert, and delete
based on sorted order are not so efficient
Useful in many, many real-world applications
Popular topic for job interview questions

Important to use a good hash function
Good distribution, uses enough of keys values
Not overly expensive to calculate (bit shifts good!)

Important to keep hash table at a good size
Prime Size
λ depends on type of table

What we skipped: perfect hashing, universal hash functions,
hopscotch hashing, cuckoo hashing


