
Some Ideas for BoundedSet Implementations 2

Use any of the dictionaries we’ve already learned! This gets usO(lgn) behavior for each of the operations.

Direct Address Table:
false false false false false false false false false
has[0] has[1] has[2] has[3] has[4] has[5] has[6] has[7] has[8]

void add(int value) { this.data[value] = true; }
boolean contains(int value) { return this.data[value]; }
void remove(int value) { this.data[value] = false; }

BitSet: Stores one or more ints and uses the ith bit to represent
the number i.

(1234)10 = (00000000000000000000010011010010)2 = {1,4,6,7,10}
void add(int value) { this.set |= 1 << value; }
boolean contains(int value) { return (this.set >> value) & 1; }
void remove(int value) { this.set &= ~(1 << value); }

Neat Fact: BitSets are often good enough in practice!



Some Ideas for BoundedSet Implementations 2

Use any of the dictionaries we’ve already learned! This gets usO(lgn) behavior for each of the operations.

Direct Address Table:
false false false false false false false false false
has[0] has[1] has[2] has[3] has[4] has[5] has[6] has[7] has[8]

void add(int value) { this.data[value] = true; }
boolean contains(int value) { return this.data[value]; }
void remove(int value) { this.data[value] = false; }

BitSet: Stores one or more ints and uses the ith bit to represent
the number i.

(1234)10 = (00000000000000000000010011010010)2 = {1,4,6,7,10}
void add(int value) { this.set |= 1 << value; }
boolean contains(int value) { return (this.set >> value) & 1; }
void remove(int value) { this.set &= ~(1 << value); }

Neat Fact: BitSets are often good enough in practice!



Hashing Non-ints 10

Here’s some ideas for hash functions for Strings:
h(s0s1�s

m−1) = 1

This hash function is very fast, but it maps everything to the same
index.

h(s0s1�s

m−1) = m−1�
i=0

s

i

This hash function ignores crucial information about the string: the
positions of the characters.

h(s0s1�s

m−1) = 2s03s15s27s311s4 . . .

This hash function maps every string to a unique number, but it’s
di�cult to compute.

h(s0s1�s

m−1) = m−1�
i=0

31i

s

i

This hash function is a nice compromise. It does have collisions, but
all information about the String is used.



Collisions 13

Definition (Collision)
A collision is when two distinct keys map to the same location in the
hash table.
A good hash function attempts to avoid as many collisions as possible,
but they are inevitable.

How do we deal with collisions?

There are multiple strategies:
Separate Chaining
Open Addressing

Linear Probing
Quadratic Probing
Double Hashing

Today, we’ll discuss Separate Chaining; next time, we’ll discuss open
addressing.



Separate Chaining 14

Idea
If we hash multiple items to the same location, store a LinkedList of
them.

Example (Insert: 10,22,107,12,42)

10

42

12

22

107

T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]

What is the worst case time for find?

Well, if the hash function were h(k) = c, then we’d get a linked list of size
n in one bucket. So, it’s O(n).



Load Factor 15

Definition (Load Factor (l ))
The load factor of a hash table is a measure of “how full” it is. We
define it as follows:

l = N�T �
If we’re using separate chaining, the average number of elements per
bucket is l .

If we do inserts followed by random finds. . .
Each unsuccessful find compares against l items
Each successful find compares against l items

For separate chaining, we should keep l ≈ 1



Load Factor Examples 16

Example (What is the Load Factor?)

10

42

12

22

107

T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]

What is l for this hash table?

l = N�T � = 5
10
= 0.5

Example (What is the Load Factor?)

10

71

2

31

42

12

22

63

73

75

5

65

95

86
27

47

88

18

38

98

99

T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]

What is l for this hash table? l = N�T � = 21
10
= 2.1


