Searching a Graph (with a SortedList)

```
    search(v) {
    worklist = [v];
    while (worklist.hasWork()) {
    v = worklist.next();
    doSomething(v);
    for (w : v.neighbors()) {
        if (w not seen) {
            worklist.add(w);
                seen = seen U{w}
        }
    }
    }
```


Searching a Graph (with a SortedList)

```
    search(v) {
    worklist = [v];
    while (worklist.hasWork()) {
    v = worklist.next();
    doSomething(v);
    for (w : v.neighbors()) {
        if (w not seen) {
            worklist.add(w);
                seen = seen U{w}
        }
    }
    }
```


Searching a Graph (with a SortedList)

```
    search(v) {
    worklist = [v];
    while (worklist.hasWork()) {
    v = worklist.next();
    doSomething(v);
    for (w : v.neighbors()) {
        if (w not seen) {
            worklist.add(w);
                seen = seen U{w}
        }
    }
    }
```


Searching a Graph (with a SortedList)

```
    search(v) {
    worklist = [v];
    while (worklist.hasWork()) {
    v = worklist.next();
    doSomething(v);
    for (w : v.neighbors()) {
        if (w not seen) {
            worklist.add(w);
                seen = seen U{w}
        }
    }
    }
```


Searching a Graph (with a SortedList)

```
    search(v) {
    worklist = [v];
    while (worklist.hasWork()) {
    v = worklist.next();
    doSomething(v);
    for (w : v.neighbors()) {
        if (w not seen) {
            worklist.add(w);
                seen = seen U{w}
        }
    }
    }
```


Searching a Graph (with a SortedList)

```
    search(v) {
    worklist = [v];
    while (worklist.hasWork()) {
    v = worklist.next();
    doSomething(v);
    for (w : v.neighbors()) {
        if (w not seen) {
            worklist.add(w);
                seen = seen U{w}
        }
    }
    }
```


Searching a Graph (with a SortedList)

```
    search(v) {
    worklist = [v];
    while (worklist.hasWork()) {
    v = worklist.next();
    doSomething(v);
    for (w : v.neighbors()) {
        if (w not seen) {
            worklist.add(w);
                seen = seen U{w}
        }
    }
    }
```


Searching a Graph (with a SortedList)

```
    search(v) {
    worklist = [v];
    while (worklist.hasWork()) {
    v = worklist.next();
    doSomething(v);
    for (w : v.neighbors()) {
        if (w not seen) {
            worklist.add(w);
                seen = seen U{w}
        }
    }
    }
```


Searching a Graph (with a SortedList)

```
    search(v) {
    worklist = [v];
    while (worklist.hasWork()) {
    v = worklist.next();
    doSomething(v);
    for (w : v.neighbors()) {
        if (w not seen) {
            worklist.add(w);
                seen = seen U{w}
        }
    }
    }
```


Searching a Graph (with a SortedList)

```
    search(v) {
    worklist = [v];
    while (worklist.hasWork()) {
    v = worklist.next();
    doSomething(v);
    for (w : v.neighbors()) {
        if (w not seen) {
            worklist.add(w);
                seen = seen U{w}
        }
    }
    }
```


Searching a Graph (with a SortedList)

```
    search(v) {
    worklist = [v];
    while (worklist.hasWork()) {
    v = worklist.next();
    doSomething(v);
    for (w : v.neighbors()) {
        if (w not seen) {
            worklist.add(w);
                seen = seen U{w}
        }
    }
    }
```


Searching a Graph (with a SortedList)

```
    search(v) {
    worklist = [v];
    while (worklist.hasWork()) {
    v = worklist.next();
    doSomething(v);
    for (w : v.neighbors()) {
        if (w not seen) {
            worklist.add(w);
                seen = seen U{w}
        }
    }
    }
```


Searching a Graph (with a SortedList)

```
    search(v) {
    worklist = [v];
    while (worklist.hasWork()) {
    v = worklist.next();
    doSomething(v);
    for (w : v.neighbors()) {
        if (w not seen) {
            worklist.add(w);
                seen = seen U{w}
        }
    }
    }
```


Searching a Graph (with a SortedList)

```
    search(v) {
    worklist = [v];
    while (worklist.hasWork()) {
    v = worklist.next();
    doSomething(v);
    for (w : v.neighbors()) {
        if (w not seen) {
            worklist.add(w);
                seen = seen U{w}
        }
    }
    }
```


Searching a Graph (with a SortedList)

```
    search(v) {
    worklist = [v];
    while (worklist.hasWork()) {
    v = worklist.next();
    doSomething(v);
    for (w : v.neighbors()) {
        if (w not seen) {
            worklist.add(w);
                seen = seen U{w}
        }
    }
    }
```


Searching a Graph (with a SortedList)

```
    search(v) {
    worklist = [v];
    while (worklist.hasWork()) {
    v = worklist.next();
    doSomething(v);
    for (w : v.neighbors()) {
        if (w not seen) {
            worklist.add(w);
                seen = seen U{w}
        }
    }
    }
```


Searching a Graph (with a SortedList)

```
    search(v) {
    worklist = [v];
    while (worklist.hasWork()) {
    v = worklist.next();
    doSomething(v);
    for (w : v.neighbors()) {
        if (w not seen) {
            worklist.add(w);
                seen = seen U{w}
        }
    }
    }
```


Searching a Graph (with a SortedList)

```
    search(v) {
    worklist = [v];
    while (worklist.hasWork()) {
    v = worklist.next();
    doSomething(v);
    for (w : v.neighbors()) {
        if (w not seen) {
            worklist.add(w);
                seen = seen U{w}
        }
    }
    }
```


Searching a Graph (with a Stack)

Okay, but we'd never actually use a SortedList. How about a Stack?
worklist
When we use a Stack:
1 This algorithm is called DFS (depth-first search)

$\downarrow \uparrow$
$\square \mathrm{a}$

2 We follow a path as far as possible, then back up
3 It can be written recursively

Searching a Graph (with a Stack)

Okay, but we'd never actually use a SortedList. How about a Stack?
worklist
When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up

3 It can be written recursively

Searching a Graph (with a Stack)

Okay, but we'd never actually use a SortedList. How about a Stack?
worklist
When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up

$$
\begin{gathered}
\downarrow \uparrow \\
\hline \mathrm{d} \\
\hline \mathrm{~b} \\
\hline
\end{gathered}
$$

3 It can be written recursively

Okay, but we'd never actually use a SortedList. How about a Stack?
worklist
When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

$\downarrow \uparrow$
g
f
e
b

Okay, but we'd never actually use a SortedList. How about a Stack?
worklist
When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

$\downarrow \uparrow$
g
f
e
b

Searching a Graph (with a Stack)

Okay, but we'd never actually use a SortedList. How about a Stack?
worklist
When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

$\downarrow \uparrow$
i
h
f
e
b

Searching a Graph (with a Stack)

Okay, but we'd never actually use a SortedList. How about a Stack?
worklist
When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

$\downarrow \uparrow$
i
h
f
e
b

Searching a Graph (with a Stack)

Okay, but we'd never actually use a SortedList. How about a Stack?
worklist
When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

$\downarrow \uparrow$
h
f
e
b

Searching a Graph (with a Stack)

Okay, but we'd never actually use a SortedList. How about a Stack?
worklist
When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

$\downarrow \uparrow$
h
f
e
b

Searching a Graph (with a Stack)

Okay, but we'd never actually use a SortedList. How about a Stack?
worklist
When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

Searching a Graph (with a Stack)

Okay, but we'd never actually use a SortedList. How about a Stack?
worklist
When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

Searching a Graph (with a Stack)

Okay, but we'd never actually use a SortedList. How about a Stack?
worklist
When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up

3 It can be written recursively

Searching a Graph (with a Stack)

Okay, but we'd never actually use a SortedList. How about a Stack?
worklist
When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up

3 It can be written recursively

Searching a Graph (with a Stack)

Okay, but we'd never actually use a SortedList. How about a Stack?
worklist
When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up

3 It can be written recursively

Searching a Graph (with a Stack)

Okay, but we'd never actually use a SortedList. How about a Stack?
worklist
When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up

3 It can be written recursively

Searching a Graph (with a Stack)

Okay, but we'd never actually use a SortedList. How about a Stack?
worklist
When we use a Stack:
1 This algorithm is called DFS (depth-first search)

$\downarrow \uparrow$
b

2 We follow a path as far as possible, then back up
3 It can be written recursively

Searching a Graph (with a Stack)

Okay, but we'd never actually use a SortedList. How about a Stack?
worklist
When we use a Stack:
1 This algorithm is called DFS (depth-first search)

$\downarrow \uparrow$
b

2 We follow a path as far as possible, then back up
3 It can be written recursively

Searching a Graph (with a Stack)

Okay, but we'd never actually use a SortedList. How about a Stack?
worklist
When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

Searching a Graph (with a Queue)

Any reason we shouldn't use a Queue?
When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node
worklist $\leftarrow a \leftarrow$

Searching a Graph (with a Queue)

Any reason we shouldn't use a Queue?
When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist \leftarrow| b | d |
| :--- | :--- |

Searching a Graph (with a Queue)

Any reason we shouldn't use a Queue?
When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist \leftarrow| b | d |
| :---: | :---: |

Searching a Graph (with a Queue)

Any reason we shouldn't use a Queue?
When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node
worklist

$$
\leftarrow \begin{array}{|c|c|c|}
\hline \text { d } & \text { c } & \mathrm{e} \\
\hline
\end{array}
$$

Searching a Graph (with a Queue)

Any reason we shouldn't use a Queue?
When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node
worklist

$$
\leftarrow \begin{array}{|c|c|c|}
\hline \text { d } & \text { c } & \mathrm{e} \\
\hline
\end{array}
$$

Searching a Graph (with a Queue)

Any reason we shouldn't use a Queue?
When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node
worklist

$$
\leftarrow \begin{array}{|c|c|c|c|}
\hline \mathrm{c} & \mathrm{e} & \mathrm{f} & \mathrm{~g} \\
\hline
\end{array}
$$

Searching a Graph (with a Queue)

Any reason we shouldn't use a Queue?
When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node
worklist

$$
\leftarrow \begin{array}{|c|c|c|c|}
\hline \mathrm{c} & \mathrm{e} & \mathrm{f} & \mathrm{~g} \\
\hline
\end{array}
$$

Searching a Graph (with a Queue)

Any reason we shouldn't use a Queue?
When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist \leftarrow| e | f | g |
| :--- | :--- | :--- |

Searching a Graph (with a Queue)

Any reason we shouldn't use a Queue?
When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist \leftarrow| e | f | g |
| :--- | :--- | :--- |

Searching a Graph (with a Queue)

Any reason we shouldn't use a Queue?
When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node
worklist

$$
\leftarrow \begin{array}{|l|l|l|}
\hline \mathrm{f} & \mathrm{~g} & \mathrm{~h} \\
\hline
\end{array}
$$

Searching a Graph (with a Queue)

Any reason we shouldn't use a Queue?
When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node
worklist

$$
\leftarrow \begin{array}{|l|l|l|}
\hline \mathrm{f} & \mathrm{~g} & \mathrm{~h} \\
\hline
\end{array}
$$

Searching a Graph (with a Queue)

Any reason we shouldn't use a Queue?
When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist \leftarrow| g | h |
| :--- | :--- |

Searching a Graph (with a Queue)

Any reason we shouldn't use a Queue?
When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist \leftarrow| g | h |
| :--- | :--- |

Searching a Graph (with a Queue)

Any reason we shouldn't use a Queue?
When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node
worklist

$$
\leftarrow \begin{array}{|l|l|}
\hline \mathrm{h} & \mathrm{i} \\
\hline
\end{array}
$$

Searching a Graph (with a Queue)

Any reason we shouldn't use a Queue?
When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node
worklist

$$
\leftarrow \begin{array}{|l|l|}
\hline \mathrm{h} & \mathrm{i} \\
\hline
\end{array}
$$

Searching a Graph (with a Queue)

Any reason we shouldn't use a Queue?
When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node
worklist $\leftarrow \mathrm{i} \leftarrow$

Searching a Graph (with a Queue)

Any reason we shouldn't use a Queue?
When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node
worklist $\leftarrow \mathrm{i} \leftarrow$

Searching a Graph (with a Queue)

Any reason we shouldn't use a Queue?
When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node
worklist \leftarrow

$$
\begin{aligned}
& \{a: \min 1, d: a, b: a,(: b, e: b, \\
& f: d, g: d\}
\end{aligned}
$$

Use A Dictionary!

```
search(v) {
    worklist = [v];
    from = new Dictionary();
    from.put(v, null);
    while (worklist.hasWork()) {
        v = worklist.next();
        doSomething(v);
        for (w : v.neighbors()) {
            if (w not in from) {
            worklist.add(w);
                from.put(w, v);
            }
        }
    }
    return from;
}
```


Asymptotic Analysis of BFS and DFS

Runtime

- Both algorithms visit all nodes in the connected component: $|V|$
- Both algorithms can visit a node once for each edge in the graph: $|E|$ So, BFS and DFS are $\mathcal{O}(|V|+|E|)$ (this is called "graph linear").

Space

- DFS: If the longest path has length p and the largest number of neighbors is n, then DFS stores at most $p n$ vertices
- BFS: Consider a tree. BFS will hold the entire bottom level which is $\mathcal{O}(|V|)$.

Trade-Offs

- DFS has better space usage, but it might find a circuitous path
- BFS will always find the shortest path to a node, but it will use more memory

Iterative Deepening

Iterative Deepening is a DFS that bounds the depth:

```
    int depth = 1;
```

 while (there are nodes to explore) \{
 dfs(v, depth);
 depth++;
 \}
 Since most of the vertices are "leaves", this actually doesn't waste much time!

- Undirected vs. Directed (do the edges have arrows?)

Undirected

Directed

Weighted vs. Unweighted (do the edges have weights?)
Unweighted \& Directed

Weighted \& Undirected

- Simple vs. Multi (loops on vertices? multiple edges?)

Multi-graph
Graph with Loops

These generalizations are all useful in different domains. We're going to talk a lot more about them over the next few lectures.

Next lecture, we'll be working mostly with directed graphs.

Back to counting edges. In a graph without multiple edges, if there are n vertices, there can be anywhere from 0 to n^{2} edges.

This is a very wide range. A graph with fewer edges is called sparse and one with closer to n^{2} is called dense.

We already saw that graph traversal was $\mathcal{O}(|E|+|V|)$:

- On a sparse graph, that's $\mathcal{O}(|V|)$
- On a dense graph, that's $\mathcal{O}\left(|V|^{2}\right)$.

Sparsity makes a huge difference!

Data Abstractions

Graphs 2:
 Representing Graphs Topological Sort

A Directed Graph is a Thingy. . .

$V=\{a\}, E=\varnothing$

$$
\begin{aligned}
V=\{b, c\}, & V=\{\Omega, d, r\} \\
E=\{(b, c)\} & E=\{(f, l),(f, c)\}
\end{aligned}
$$

Let's extend our terminology for directed graphs!

A Directed Graph is a Thingy. . .

$$
\begin{array}{cc}
V=\{b, c\}, & V=\{d, e, f\}, \\
E=\{(b, c)\} & E=\{(f, e),(f, d)\}
\end{array}
$$

$$
\begin{gathered}
V=\{g, h, i, j\}, \\
E=\{(g, h),(h, i),(g, j), \\
(i, h),(j, h),(i, j)\}
\end{gathered}
$$

Let's extend our terminology for directed graphs!

More Graphs

A Lonely Graph

Complete Directed Graph

Some Questions

- How many edges can a directed graph with $|V|=n$ have?
- How many edges can a directed graph with $|V|=n$ and possible loops have?

More Graphs

A Lonely Graph

Complete Directed Graph

Some Questions

- How many edges can a directed graph with $|V|=n$ have?

■ How many edges can a directed graph with $|V|=n$ and possible loops have?

More Graphs

A Lonely Graph

Complete Directed Graph

Some Questions

- How many edges can a directed graph with $|V|=n$ have?

$$
|E|=n(n-1)
$$

- How many edges can a directed graph with $|V|=n$ and possible loops have?

$$
|E|=n^{2}
$$

Definition (Degree)
The degree of a vertex in a graph is the number of vertices adjacent to it. In the above graph, we have:

Definition (Degree)
The degree of a vertex in a graph is the number of vertices adjacent to it. In the above graph, we have:

a	b	c	d	e	f	g	h
3	2	3	2	3	1	1	1

Definition (In \& Out Degree)
The in-degree of a vertex, v, in a graph is $|\{(x, v) \mid(x, v) \in E, x \in V\}|$. The out-degree of a vertex, v, in a graph is $|\{(v, x) \mid(x, v) \in E, x \in V\}|$.

	a	b	c	d	e	f	g	h
In-Degree	l				∂			0
Out-Degree	2				3			I

Definition (In \& Out Degree)
The in-degree of a vertex, v, in a graph is $|\{(x, v) \mid(x, v) \in E, x \in V\}|$. The out-degree of a vertex, v, in a graph is $|\{(v, x) \mid(x, v) \in E, x \in V\}|$.

	a	b	c	d	e	f	g	h
In-Degree	1	2	2	1	0	1	1	0
Out-Degree								

Definition (In \& Out Degree)
The in-degree of a vertex, v, in a graph is $|\{(x, v) \mid(x, v) \in E, x \in V\}|$. The out-degree of a vertex, v, in a graph is $|\{(v, x) \mid(x, v) \in E, x \in V\}|$.

	a	b	c	d	e	f	g	h
In-Degree	1	2	2	1	0	1	1	0
Out-Degree	2	0	1	1	3	0	0	1

Re-examining Paths and Cycles on Directed Graphs

Paths?

Cycle

Definition (Strongly Connected Directed Graph)

We say a directed graph is strongly connected iff for every pair of vertices, $u, v \in V$, there is a path from u to v.

Strongly Connected!

Not Strongly Connected!

Definition (Weakly Connected Directed Graph)

We say a directed graph is weakly connected iff the underlying undirected graph is connected.

That is, if we "undirected the edges", if the graph is connected, then the digraph is weakly connected.

Graph Data Structures

Adjacency Matrix

	a		b	c
d				
a	0	1	1	0
b	1	0	1	0
c	1	1	0	1
d	0	0	1	0

Adjacency List

$$
\begin{aligned}
& \mathrm{a}: \mathrm{b} \longrightarrow \mathrm{c} \longrightarrow \\
& \mathrm{~b}: \mathrm{a} \longrightarrow \mathrm{c} \longrightarrow \\
& \mathrm{c}: \mathrm{a} \longrightarrow \mathrm{~b} \longrightarrow \mathrm{~d} \longrightarrow \\
& \mathrm{~d}: \mathrm{c} \longrightarrow
\end{aligned}
$$

Adjacency Matrix Analysis

Adjacency Matrix

Adjacency List

$a: b \longrightarrow C$
b: $\mathrm{a} \longrightarrow \mathrm{c} \longrightarrow$
$c: a \rightarrow d \rightarrow d \longrightarrow$
$\mathrm{d}: \mathrm{c} \longrightarrow$

Adjacency Matrix Properties

How long to...

- Get a vertex's out-edges? $\mathcal{O}(|V|)$
- Get a vertex's in-edges? $\mathcal{O}(|V|)$
- Check if an edge exists? $\mathcal{O}(1)$
- Insert an edge? $\mathcal{O}(1)$
- Delete an edge? $\mathcal{O}(1)$

Space Requirements: $\mathcal{O}\left(|V|^{2}\right)$
Adjacency Matrices are reasonable for dense graphs, but not otherwise.

Adjacency List Analysis

Adjacency Matrix

Adjacency List

	a	b	c	d
a	0	1	1	0
b	1	0	1	0
c	1	1	0	1
d	0	0	1	0

a: $\mathrm{b} \longrightarrow \mathrm{c} \longrightarrow$
b: $\mathrm{a} \longrightarrow \mathrm{c} \longrightarrow$
$c: a \rightarrow b \longrightarrow d \longrightarrow$
$\mathrm{d}: \mathrm{c} \longrightarrow$

Adjacency List Properties

How long to. . .
■ Get a vertex's out-edges? $\mathcal{O}(d)$
■ Get a vertex's in-edges? $\mathcal{O}(|E|)$

- To fix this, keep a second adjacency list going the other way
- Check if an edge exists? $\mathcal{O}(d)$
- Insert an edge? $\mathcal{O}(1)$
- Delete an edge? $\mathcal{O}(d)$

Space Requirements: $\mathcal{O}(|V|+|E|)$
Adjacency Lists should be your goto choice.

Directed Acyclic Graphs: DAGs

Definition (DAG)

A DAG is a directed, acyclic graph.

By "acyclic", we mean in the directed sense.
DAGs vs. Trees?
Is there a tree that isn't a DAG?

Directed Acyclic Graphs: DAGs

DAGs vs. Trees?

All trees are DAGs (remember, trees must be acyclic and connected!).
Not all DAGs are trees. See previous slide. Also, DAGs don't have to be connected!

Why DAGs?

They come up a lot in practice. Cycles can be icky. Examples:

- Any sort of scheduling problem (scheduling your courses, scheduling fork-join threads, ...)
- Causal Structures (Baysian Networks)
- Genealogy

■ . . .

Topological Sort

Topological Sort

Given a DAG $(G=(V, E))$, output all the vertices in an order such that no vertex appears before any vertex that has an edge to it.
"Output an order to process the graph that meets all dependencies"
This is how we can allocate work in the ForkJoin model!

How Many Valid Topological Sorts?

- $T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}, T_{7}, T_{8}, T_{9}, T_{10}$
- $T_{1}, T_{2}, T_{4}, T_{3}, T_{5}, T_{6}, T_{7}, T_{8}, T_{9}, T_{10}$
- $T_{1}, T_{2}, T_{5}, T_{4}, T_{3}, T_{6}, T_{7}, T_{8}, T_{9}, T_{10}$
- $T_{1}, T_{3}, T_{6}, T_{7}, T_{9}, T_{2}, T_{5}, T_{4}, T_{8}, T_{10}$

An Idea

Implementing Topological Sort

Throw all the in-degrees in a priority queue. removeMin() repeatedly.

- This works, but it's too slow.

■ Insight: PriorityQueues must deal with negative numbers; indegree will never be negative!

- Instead: Split ready vs. not ready (0 vs. non-zero) sets
- The "ready set" is a worklist!

Setup

Do Work

1 while (worklist.hasWork()) \{
v = worklist.next();
output.add(v);
for (w : neighbors(v)) \{
deps[w] -= 1
if (deps[w] == 0) \{
worklist.add(w) ;
\}
\}
\}

Topologically Sorting A DAG (with a Queue)

worklist \leftarrow

Topologically Sorting A DAG (with a Queue)

worklist \leftarrow

output

Topologically Sorting A DAG (with a Queue)

worklist \leftarrow| T_{1} | T_{8} | T_{10} |
| :--- | :--- | :--- |

output

Topologically Sorting A DAG (with a Queue)

worklist \leftarrow| T_{8} | T_{10} |
| :--- | :--- |

output

Topologically Sorting A DAG (with a Queue)

worklist $\leftarrow T_{\circ} T_{10} T_{3} \leftarrow$

Topologically Sorting A DAG (with a Queue)

worklist \leftarrow| T_{10} | T_{3} |
| :--- | :--- |

Topologically Sorting A DAG (with a Queue)

worklist \leftarrow| T_{10} | T_{3} |
| :--- | :--- |

Topologically Sorting A DAG (with a Queue)

worklist $\leftarrow T_{3} \leftarrow$

Topologically Sorting A DAG (with a Queue)

worklist \leftarrow

Topologically Sorting A DAG (with a Queue)

worklist $\leftarrow T_{4} \leftarrow$

Topologically Sorting A DAG (with a Queue)

worklist \leftarrow

$$
\begin{array}{cccccccc|c|c|c|c|}
\hline \text { output } & T_{1} & T_{8} & T_{10} & T_{3} & T_{4} & & & & & \\
\hline \circ \text { o[0] } & \circ[1] & \circ[2] & \circ[3] & \circ[4] & \circ[5] & \circ[6] & \circ[7] & \circ[8] & \circ[9]
\end{array}
$$

Topologically Sorting A DAG (with a Queue)

worklist $\leftarrow T_{2} T_{5} \leftarrow$

Topologically Sorting A DAG (with a Queue)

worklist $\leftarrow T_{5} \leftarrow$

Topologically Sorting A DAG (with a Queue)

worklist $\leftarrow T_{5} T_{7} \leftarrow$

Topologically Sorting A DAG (with a Queue)

worklist $\leftarrow T_{7} \leftarrow$

Topologically Sorting A DAG (with a Queue)

worklist $\leftarrow T_{7} \leftarrow$

Topologically Sorting A DAG (with a Queue)

worklist \leftarrow

Topologically Sorting A DAG (with a Queue)

worklist \leftarrow| T_{6} | T_{9} |
| :--- | :--- |\leftarrow

Topologically Sorting A DAG (with a Queue)

worklist $\leftarrow T_{9} \leftarrow$

Topologically Sorting A DAG (with a Queue)

worklist \leftarrow

Topologically Sorting A DAG (with a Queue)

Analyzing Topological Sort

What happens if there is a cycle?

Our worklist will be empty before we've processed all of the vertices. (e.g., "there are no nodes ready to print next, but we haven't gone through all of them)
In this case: our algorithm should throw a "not a DAG exception".

Runtime?

- Setup: We follow every edge for every vertex: $\mathcal{O}(|V|+|E|)$
- We add/remove each vertex from the work list once: $\mathcal{O}(|V|)$
- We decrement each indegree until zero (once for each edge): $\mathcal{O}(|E|)$
- So, overall, it's graph linear!

