
Searching a Graph (with a SortedList) 22

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a SortedList) 22

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a SortedList) 22

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a SortedList) 22

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a SortedList) 22

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a SortedList) 22

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a SortedList) 22

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a SortedList) 22

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a SortedList) 22

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a SortedList) 22

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a SortedList) 22

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a SortedList) 22

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a SortedList) 22

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a SortedList) 22

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a SortedList) 22

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a SortedList) 22

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a SortedList) 22

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a SortedList) 22

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Stack) 23

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist↓↑
a

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Stack) 23

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist↓↑
d
b

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Stack) 23

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist↓↑
d
b

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Stack) 23

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist↓↑
g
f
e
b

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Stack) 23

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist↓↑
g
f
e
b

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Stack) 23

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist↓↑
i
h
f
e
b

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Stack) 23

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist↓↑
i
h
f
e
b

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Stack) 23

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist↓↑
h
f
e
b

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Stack) 23

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist↓↑
h
f
e
b

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Stack) 23

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist↓↑
f
e
b

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Stack) 23

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist↓↑
f
e
b

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Stack) 23

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist↓↑
e
b

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Stack) 23

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist↓↑
e
b

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Stack) 23

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist↓↑
c
b

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Stack) 23

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist↓↑
c
b

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Stack) 23

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist↓↑
b

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Stack) 23

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist↓↑
b

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Stack) 23

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist↓↑

a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Queue) 24

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� a ←�
a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Queue) 24

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� b d ←�
a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Queue) 24

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� b d ←�
a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Queue) 24

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� d c e ←�
a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Queue) 24

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� d c e ←�
a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Queue) 24

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� c e f g ←�
a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Queue) 24

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� c e f g ←�
a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Queue) 24

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� e f g ←�
a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Queue) 24

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� e f g ←�
a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Queue) 24

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� f g h ←�
a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Queue) 24

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� f g h ←�
a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Queue) 24

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� g h ←�
a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Queue) 24

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� g h ←�
a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Queue) 24

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� h i ←�
a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Queue) 24

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� h i ←�
a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Queue) 24

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� i ←�
a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Queue) 24

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� i ←�
a

d

b

e

c

f

g

i

h

j

Searching a Graph (with a Queue) 24

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←
a

d

b

e

c

f

g

i

h

j

Searching a Graph: Recovering The Path 25

Use A Dictionary!

search(v) {
worklist = [v];
from = new Dictionary();
from.put(v, null);
while (worklist.hasWork()) {

v = worklist.next();
doSomething(v);
for (w : v.neighbors()) {

if (w not in from) {
worklist.add(w);
from.put(w, v);

}
}

}
return from;

}

findPath(v, w) {
from = search(v);
path = [];
curr = w;
while (curr != null) {

path.add(0, curr);
curr = from[curr];

}
return path;

}

Asymptotic Analysis of BFS and DFS 26

Runtime
Both algorithms visit all nodes in the connected component: �V �
Both algorithms can visit a node once for each edge in the graph: �E �

So, BFS and DFS are O(�V �+ �E �) (this is called “graph linear”).

Space
DFS: If the longest path has length p and the largest number of
neighbors is n, then DFS stores at most pn vertices
BFS: Consider a tree. BFS will hold the entire bottom level which isO(�V �).

BFS and DFS Trade-O�s 27

Trade-O�s
DFS has better space usage, but it might find a circuitous path
BFS will always find the shortest path to a node, but it will use more
memory

Iterative Deepening
Iterative Deepening is a DFS that bounds the depth:

1 int depth = 1;
2 while (there are nodes to explore) {
3 dfs(v, depth);
4 depth++;
5 }

Since most of the vertices are “leaves”, this actually doesn’t waste
much time!

Generalizing Graphs: Direction & Edge Weight 28

Undirected vs. Directed (do the edges have arrows?)

Undirected
a

b

c

Directed
a

b

c

Weighted vs. Unweighted (do the edges have weights?)

Unweighted & Directed

a

b

c

Weighted & Undirected

100

50

1 a

b

c

Generalizing Graphs: Multi-Edges 29

Simple vs. Multi (loops on vertices? multiple edges?)

Multi-graph

a

b

c

Graph with Loops

100

50

1 a

b

c

These generalizations are all useful in di�erent domains. We’re
going to talk a lot more about them over the next few lectures.

Next lecture, we’ll be working mostly with directed graphs.

A Word about Sparsity 30

Back to counting edges. In a graph without multiple edges, if there are n

vertices, there can be anywhere from 0 to n

2 edges.

This is a very wide range. A graph with fewer edges is called sparse and
one with closer to n

2 is called dense.

We already saw that graph traversal was O(�E �+ �V �):
On a sparse graph, that’s O(�V �)
On a dense graph, that’s O(�V �2).

Sparsity makes a huge di�erence!

Adam Blank Winter 2016Lecture 21

CSE332
Data Abstractions

CSE 332: Data Abstractions

Graphs 2:
Representing Graphs

Topological Sort

A Directed Graph is a Thingy. . . 1

a

V = {a}, E =�

b

c

V = {b,c},
E = {(b,c)}

f

e d

V = {d,e, f},
E = {(f ,e),(f ,d)}

g

h

ij

V = {g,h, i, j},
E = {(g,h),(h, i),(g, j),(i,h),(j,h),(i, j)}

Let’s extend our terminology for directed graphs!

A Directed Graph is a Thingy. . . 1

a

V = {a}, E =�

b

c

V = {b,c},
E = {(b,c)}

f

e d

V = {d,e, f},
E = {(f ,e),(f ,d)}

g

h

ij

V = {g,h, i, j},
E = {(g,h),(h, i),(g, j),(i,h),(j,h),(i, j)}

Let’s extend our terminology for directed graphs!

More Graphs 2

A Lonely Graph

a

b

cd

Complete Directed Graph

a

b

cd

Some Questions
How many edges can a directed graph with �V � = n have?

�E � = n(n−1)

How many edges can a directed graph with �V � = n and possible
loops have?

�E � = n

2

More Graphs 2

A Lonely Graph

a

b

cd

Complete Directed Graph

a

b

cd

Some Questions
How many edges can a directed graph with �V � = n have?

�E � = n(n−1)
How many edges can a directed graph with �V � = n and possible
loops have?

�E � = n

2

More Graphs 2

A Lonely Graph

a

b

cd

Complete Directed Graph

a

b

cd

Some Questions
How many edges can a directed graph with �V � = n have?

�E � = n(n−1)
How many edges can a directed graph with �V � = n and possible
loops have? �E � = n

2

New Terminology: Degree 3

h b a

d

c

e

f

g

Definition (Degree)
The degree of a vertex in a graph is the number of vertices adjacent to
it. In the above graph, we have:

a b c d e f g h

3 2 3 2 3 1 1 1

New Terminology: Degree 3

h b a

d

c

e

f

g

Definition (Degree)
The degree of a vertex in a graph is the number of vertices adjacent to
it. In the above graph, we have:

a b c d e f g h

3 2 3 2 3 1 1 1

Burgers? Now? 4

h b a

d

c

e

f

g

Definition (In & Out Degree)
The in-degree of a vertex, v, in a graph is �{(x,v) � (x,v) ∈ E,x ∈V}�.
The out-degree of a vertex, v, in a graph is �{(v,x) � (x,v) ∈ E,x ∈V}�.

a b c d e f g h

In-Degree

1 2 2 1 0 1 1 0

Out-Degree

2 0 1 1 3 0 0 1

Burgers? Now? 4

h b a

d

c

e

f

g

Definition (In & Out Degree)
The in-degree of a vertex, v, in a graph is �{(x,v) � (x,v) ∈ E,x ∈V}�.
The out-degree of a vertex, v, in a graph is �{(v,x) � (x,v) ∈ E,x ∈V}�.

a b c d e f g h

In-Degree 1 2 2 1 0 1 1 0

Out-Degree

2 0 1 1 3 0 0 1

Burgers? Now? 4

h b a

d

c

e

f

g

Definition (In & Out Degree)
The in-degree of a vertex, v, in a graph is �{(x,v) � (x,v) ∈ E,x ∈V}�.
The out-degree of a vertex, v, in a graph is �{(v,x) � (x,v) ∈ E,x ∈V}�.

a b c d e f g h

In-Degree 1 2 2 1 0 1 1 0

Out-Degree 2 0 1 1 3 0 0 1

Re-examining Paths and Cycles on Directed Graphs 5

Paths?
1

2

3

4 6

5

7

8

Cycle

1

2

3

4 6

5

7

8

Making A Connection! 6

Definition (Strongly Connected Directed Graph)
We say a directed graph is strongly connected i� for every pair of
vertices, u,v ∈V , there is a path from u to v.

1

2

3

4 6

5

7

8

Strongly Connected! Not Strongly Connected!

Definition (Weakly Connected Directed Graph)
We say a directed graph is weakly connected i� the underlying
undirected graph is connected.

That is, if we “undirected the edges”, if the graph is connected, then the
digraph is weakly connected.

Graph Data Structures 7

a

b c

d

Adjacency Matrix
a b c d

a 0 1 1 0
b 1 0 1 0
c 1 1 0 1
d 0 0 1 0

Adjacency List

a: b �→ c �→
b: a �→ c �→
c: a �→ b �→ d �→
d: c �→

Adjacency Matrix Analysis 8

Adjacency Matrix
a b c d

a 0 1 1 0
b 1 0 1 0
c 1 1 0 1
d 0 0 1 0

Adjacency List

a: b �→ c �→
b: a �→ c �→
c: a �→ b �→ d �→
d: c �→

Adjacency Matrix Properties
How long to. . .

Get a vertex’s out-edges? O(�V �)
Get a vertex’s in-edges? O(�V �)
Check if an edge exists? O(1)
Insert an edge? O(1)
Delete an edge? O(1)

Space Requirements: O(�V �2)
Adjacency Matrices are reasonable for dense graphs, but not otherwise.

Adjacency List Analysis 9

Adjacency Matrix
a b c d

a 0 1 1 0
b 1 0 1 0
c 1 1 0 1
d 0 0 1 0

Adjacency List

a: b �→ c �→
b: a �→ c �→
c: a �→ b �→ d �→
d: c �→

Adjacency List Properties
How long to. . .

Get a vertex’s out-edges? O(d)
Get a vertex’s in-edges? O(�E �)

To fix this, keep a second adjacency list going the other way

Check if an edge exists? O(d)
Insert an edge? O(1)
Delete an edge? O(d)

Space Requirements: O(�V �+ �E �)
Adjacency Lists should be your goto choice.

Directed Acyclic Graphs: DAGs 10

Definition (DAG)
A DAG is a directed, acyclic graph.

a

b c

d e f g

h i

j

By “acyclic”, we mean in the directed sense.

DAGs vs. Trees?
Is there a tree that isn’t a DAG? Is there a DAG that isn’t a tree?

Directed Acyclic Graphs: DAGs 11

DAGs vs. Trees?
All trees are DAGs (remember, trees must be acyclic and connected!).

Not all DAGs are trees. See previous slide. Also, DAGs don’t have to be
connected!

Why DAGs?
They come up a lot in practice. Cycles can be icky. Examples:

Any sort of scheduling problem (scheduling your courses, scheduling
fork-join threads, . . .)
Causal Structures (Baysian Networks)
Genealogy
. . .

Topological Sort 12

Topological Sort
Given a DAG (G = (V,E)), output all the vertices in an order such that
no vertex appears before any vertex that has an edge to it.

“Output an order to process the graph that meets all dependencies”

This is how we can allocate work in the ForkJoin model!

T1

T2 T3

T4 T5 T6 T7

T8 T9

T10

Topological Sort 13

How Many Valid Topological Sorts?
T1

T2 T3

T4 T5 T6 T7

T8 T9

T10

T1,T2,T3,T4,T5,T6,T7,T8,T9,T10

T1,T2,T4,T3,T5,T6,T7,T8,T9,T10

T1,T2,T5,T4,T3,T6,T7,T8,T9,T10

T1,T3,T6,T7,T9,T2,T5,T4,T8,T10

. . .

An Idea 14

Implementing Topological Sort
Throw all the in-degrees in a priority queue. removeMin() repeatedly.

This works, but it’s too slow.
Insight: PriorityQueues must deal with negative numbers;
indegree will never be negative!
Instead: Split ready vs. not ready (0 vs. non-zero) sets
The “ready set” is a worklist!

Setup
1 output = []
2 deps = {}
3 worklist = []
4 for (v : vertices) {
5 deps[v] = in−degree(v);
6 if (deps[v] == 0) {
7 worklist.add(v);
8 }
9 }

Do Work
1 while (worklist.hasWork()) {
2 v = worklist.next();
3 output.add(v);
4 for (w : neighbors(v)) {
5 deps[w] −= 1
6 if (deps[w] == 0) {
7 worklist.add(w);
8 }
9 }

10 }

Topologically Sorting A DAG (with a Queue) 15

worklist ←
T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

output
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

Topologically Sorting A DAG (with a Queue) 15

worklist ←
T1

0

T2

2

T31

T4

1
T52

T6

2

T7

2

T8

0

T9

3

T10

0

output
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

Topologically Sorting A DAG (with a Queue) 15

worklist ←� T1 T8 T10 ←�
T1

T2

2

T31

T4

1
T52

T6

2

T7

2

T8

T9

3

T10

output
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

Topologically Sorting A DAG (with a Queue) 15

worklist ←� T8 T10 ←�
T1

T2

1

T30

T4

1
T52

T6

2

T7

2

T8

T9

3

T10

output T1
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

Topologically Sorting A DAG (with a Queue) 15

worklist ←� T8 T10 T3 ←�
T1

T2

1

T3

T4

1
T52

T6

2

T7

2

T8

T9

3

T10

output T1
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

Topologically Sorting A DAG (with a Queue) 15

worklist ←� T10 T3 ←�
T1

T2

1

T3

T4

1
T52

T6

2

T7

1

T8

T9

2

T10

output T1 T8
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

Topologically Sorting A DAG (with a Queue) 15

worklist ←� T10 T3 ←�
T1

T2

1

T3

T4

1
T52

T6

2

T7

1

T8

T9

2

T10

output T1 T8
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

Topologically Sorting A DAG (with a Queue) 15

worklist ←� T3 ←�
T1

T2

1

T3

T4

1
T52

T6

2

T7

1

T8

T9

2

T10

output T1 T8 T10
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

Topologically Sorting A DAG (with a Queue) 15

worklist ←
T1

T2

1

T3

T4

0
T51

T6

2

T7

1

T8

T9

2

T10

output T1 T8 T10 T3
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

Topologically Sorting A DAG (with a Queue) 15

worklist ←� T4 ←�
T1

T2

1

T3

T4

T51

T6

2

T7

1

T8

T9

2

T10

output T1 T8 T10 T3
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

Topologically Sorting A DAG (with a Queue) 15

worklist ←
T1

T2

0

T3

T4

T50

T6

2

T7

1

T8

T9

1

T10

output T1 T8 T10 T3 T4
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

Topologically Sorting A DAG (with a Queue) 15

worklist ←� T2 T5 ←�
T1

T2

T3

T4

T5

T6

2

T7

1

T8

T9

1

T10

output T1 T8 T10 T3 T4
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

Topologically Sorting A DAG (with a Queue) 15

worklist ←� T5 ←�
T1

T2

T3

T4

T5

T6

1

T7

0

T8

T9

1

T10

output T1 T8 T10 T3 T4 T2
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

Topologically Sorting A DAG (with a Queue) 15

worklist ←� T5 T7 ←�
T1

T2

T3

T4

T5

T6

1

T7

T8

T9

1

T10

output T1 T8 T10 T3 T4 T2
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

Topologically Sorting A DAG (with a Queue) 15

worklist ←� T7 ←�
T1

T2

T3

T4

T5

T6

1

T7

T8

T9

1

T10

output T1 T8 T10 T3 T4 T2 T5
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

Topologically Sorting A DAG (with a Queue) 15

worklist ←� T7 ←�
T1

T2

T3

T4

T5

T6

1

T7

T8

T9

1

T10

output T1 T8 T10 T3 T4 T2 T5
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

Topologically Sorting A DAG (with a Queue) 15

worklist ←
T1

T2

T3

T4

T5

T6

0

T7

T8

T9

0

T10

output T1 T8 T10 T3 T4 T2 T5 T7
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

Topologically Sorting A DAG (with a Queue) 15

worklist ←� T6 T9 ←�
T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

output T1 T8 T10 T3 T4 T2 T5 T7
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

Topologically Sorting A DAG (with a Queue) 15

worklist ←� T9 ←�
T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

output T1 T8 T10 T3 T4 T2 T5 T7 T6
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

Topologically Sorting A DAG (with a Queue) 15

worklist ←
T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

output T1 T8 T10 T3 T4 T2 T5 T7 T6 T9
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

Topologically Sorting A DAG (with a Queue) 15

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

Analyzing Topological Sort 16

What happens if there is a cycle?
Our worklist will be empty before we’ve processed all of the vertices.
(e.g., “there are no nodes ready to print next, but we haven’t gone
through all of them)
In this case: our algorithm should throw a “not a DAG exception”.

Runtime?
Setup: We follow every edge for every vertex: O(�V �+ �E �)
We add/remove each vertex from the work list once: O(�V �)
We decrement each indegree until zero (once for each edge): O(�E �)
So, overall, it’s graph linear!

